Fly's eye Cubic cityscape #1

A first experiment to draw a procedural city of cubic building blocks. The city will be different each reload / re-compile. Try out different options by changing the settings at the top of the code.

In a next turtle, I will clean up and optimize the code and add more variety to the buildings.

#city #polygons #3D

Log in to post a comment.

// Forked from "Cubic cityscape #1" by reinder
// https://turtletoy.net/turtle/789cce3829

// Cubic cityscape #1. Created by Reinder Nijhoff 2018
// @reindernijhoff
//
// https://turtletoy.net/turtle/789cce3829
//

// Try different settings here:

const useOrthoGraphicPerspective = Math.random() > .5;
const towerness = .25; // [0, 1)
const topDownView = Math.random() > .5;
const addHatching = Math.random() > .5;

// A lot of ugly code:


const gridSize = 10; //min=1 max=50 step=1
const projectionMargin = 2; //min=0 max=10 step=.1
const segmentCapture = .16; // min=.01 max=1 step=.01
const captureWidth = 200; //min=10 max=200 step=1
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);

const GRID = { TOP: 1, RIGHT: 2, BOTTOM: 4, LEFT: 8 };

// Global code will be evaluated once.
turtlelib_init();
const turtle = new ObservableTurtle();
const sls = FlyEyeFactory(
    turtle,
    gridSize,// gridSize,
    [projectionMargin-100, projectionMargin-100], //gridTopLeft,
    [100-projectionMargin, 100-projectionMargin], //gridBottomRight,
    projectionMargin, //gridMargin,
    [-captureWidth/2, -captureWidth/2], //sampleTopLeft,
    [captureWidth/2, captureWidth/2], //sampleBottomRight,
    segmentCapture//sampleTileSizeFraction
);
let viewProjectionMatrix;

let polygonList = [];
const lineSegmentsDrawn = []; // keep track of all line segments. Don't draw duplicates

const width = 30;
const depth = 70;

const camPos = [12,topDownView?13.5:-10.5,-2.3]; 
const camLookat = [19,topDownView?9.5:-6,-10];

function walk(i) {
    if (i == 0) {
        setupCamera();
    }
    
    for (let j=0; j<width; j++) {
        const x = (width - j + (i+1)/2|0) - (width-20);
        const z = -(j + i/2|0) + (width-20);
        const y = (x-z-40); // 2

        drawHome(turtle,   [x,y,z], true);
    }
    return i < depth;
}

function createWall() {
    return[createSquare([0,0,0], [1,1,0])]; // wall
}

function createWallDecoration(floorLevel) {
    const p = [];
    for (let i=0; i<2; i++) {
        const x = .2+i*.4;
        if (Math.random() > .5) {
            p.push(createSquare([x,0.3,0], [x+.2,.7,0])); // window
        } else if (floorLevel && Math.random() > .7) {
            p.push(createSquare([x,0,0], [x+.2,.7,0])); // door
        }
    }
    
    return p;
}

function createRoof() {
    const p = [];
    let flat = false;
    
    if (Math.random() > .5) {
        p.push(createSquare([0,1,0], [1,1,-1])); // roof
        flat = true;
    } else {
        p.push(createSquare([0,1,0], [1,1.5,-.5])); // roof
        p.push(createSquare([0,1,-1], [1,1.5,-.5]).reverse()); // roof
        p.push([[0,1,-1],[0,1.5,-.5],[0,1,0]]);
        p.push([[1,1,0],[1,1.5,-.5],[1,1,-1]]);
        if (Math.random() > .5) {
            return {flatRoof: false, flipped: true, polygons: flipxz(p)};
        }
    }
    return {flatRoof: flat, flipped: false, polygons: p};
}

function drawHome(turtle, loc, floorLevel) {
    let p = [];
    const occluders = [];
    let roof = false;
    
    p = p.concat(center(createWall(), loc));
    p = p.concat(center(flipxz(createWall()), loc));

    p = p.concat(center(createWallDecoration(floorLevel), loc));
    p = p.concat(center(flipxz(createWallDecoration(floorLevel)), loc));
    
    if (Math.random() > 1-towerness) { // extra level
        drawHome(turtle, add3(loc,[0,1,0]), false);
    } else {
        roof = createRoof();
        p = p.concat(center(roof.polygons, loc));
    }

    for (let i=0; i<p.length; i++) {
        const polygon = new Polygon();
        const vl = p[i];

        const vd = useOrthoGraphicPerspective ? 
            sub3(camLookat, camPos) : sub3(scale3(add3(vl[0],vl[2]),.5), camPos);
        let normal = cross3(sub3(vl[1],vl[0]),sub3(vl[2],vl[0]));
        if (dot3(normal,vd) < 0 ) {
            continue;
        }
        
        for (let j=0; j<vl.length; j++) {
            const v = transform4(vl[j], viewProjectionMatrix);
            if (useOrthoGraphicPerspective) {
                polygon.cp.push([(v[0]*2.5), -(v[1]*2.5)]);
            } else {
                polygon.cp.push([(v[0]/v[3]*50), -(v[1]/v[3]*50)]);
            }
        } 
        let vis = false;
        for (let j=0; j<polygon.cp.length; j++) {
            if (Math.abs(polygon.cp[j][0]) < 100 && Math.abs(polygon.cp[j][1]) < 100) {
                vis = true;
            }
        }
        
        if (!vis) {
            continue;
        }
        
        if (i<2) { // first two are walls
            polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1]));
            if (roof && !topDownView) {
                if (roof.flatRoof || (roof.flipped && i == 1) || (!roof.flipped && i == 0)) {
                    polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2]));
                }
            }
            polygon.dp.push(new LineSegment(polygon.cp[2], polygon.cp[3]));
        } else if (polygon.cp.length === 3) { // roof
            polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1]));
            polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2]));
        } else {
            polygon.addOutline();
        }
        
        if (addHatching) {
            normal = normalize3(normal);
            if (normal[2] < 0) {
                polygon.addHatching(.85, .75);
            }
        }
        
        const occluder = drawPolygon(turtle, polygon);
        
        if (i<2) { // first two are walls
            occluders.push(polygon);
        } else if (occluder) {
            occluders.push(occluder);
        }
    }
    polygonList = polygonList.concat(occluders);
}

function drawPolygon(turtle, p) {
    for (let j=0; j<polygonList.length; j++) {
        if(!p.boolean(polygonList[j])) {
            return;
        }
    }
    p.draw(turtle);
    return p;
}

function setupCamera() {
    viewMatrix = lookAt4m(camPos, camLookat, [0,1,0]);
    projectionMatrix = perspective4m(0.4, 1);
    viewProjectionMatrix = multiply4m(projectionMatrix, viewMatrix);
}

// helper functions
function flipxz(p) {
     for (let i=0; i<p.length; i++) {
        const vl = p[i];
        for (let j=0; j<vl.length; j++) {
            p[i][j] = [-vl[j][2],vl[j][1],vl[j][0]-1];
        }
    }
    return p;
}

function center(p, loc) {
    const ret = [];
    for (let i=0; i<p.length; i++) {
        const vl = p[i], v = [];
        for (let j=0; j<vl.length; j++) {
            v.push(add3(vl[j], loc));
        }
        ret.push(v);
    }
    return ret;
}

function createSquare(lb, rt) {
    return [lb,[lb[0],rt[1],rt[2]],rt,[rt[0],lb[1],lb[2]]];
}

// polygon functions
class LineSegment {
    constructor(p1, p2) {
        this.p1 = p1;
        this.p2 = p2;
    }
    unique() {
        for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) {
            const ls = lineSegmentsDrawn[i];
            if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) ||
                 (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){
                return false;
            }
        }
        lineSegmentsDrawn.push(this);
        return true;
    }
}

class Polygon {
    constructor() {
        this.cp = []; // clip path: array of [x,y] pairs
        this.dp = []; // 2d line to draw: array of linesegments
    }
    addOutline(s=0) {
        for (let i=s, l=this.cp.length; i<l; i++) {
            this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l]));
        }
    }
    createPoly(x,y,c,r,a) {
        this.cp = [];
        for (let i=0; i<c; i++) {
            this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] );
        }
    }
    addHatching(a,d) {
        // todo, create a tight bounding polygon, for now fill screen
        const tp = new Polygon();
        tp.createPoly(0,0,4,200,Math.PI*.5);
        const dx = Math.sin(a)*d, dy = Math.cos(a)*d;
        const cx = Math.sin(a)*200, cy = Math.cos(a)*200;
        for (let i = .5; i<150/d; i++) {
            tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx]));
            tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx]));
        }
        tp.boolean(this, false);
        this.dp = this.dp.concat(tp.dp);
    }
    draw(t) {
        if (this.dp.length ==0) {
            return;
        }
        for (let i=0, l=this.dp.length; i<l; i++) {
            const d = this.dp[i];
            if (d.unique()) {
                if (!equal2(d.p1, t.pos())) {
                    t.penup();
                    t.goto(d.p1);
                    t.pendown();   
                }
                t.goto(d.p2);
            }
        }
    }
    inside(p) {
        // find number of intersections from p to far away - if even you're outside
        const p1 = [0, -1000];
        let int = 0;
        for (let i=0, l=this.cp.length; i<l; i++) {
            if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) {
                int ++;
            }    
        }
        return int & 1;
    }
    boolean(p, diff = true) {
        // very naive polygon diff algorithm - made this up myself
        const ndp = [];
        for (let i=0, l=this.dp.length; i<l; i++) {
            const ls = this.dp[i];
            
            // find all intersections with clip path
            const int = [];
            for (let j=0, cl=p.cp.length; j<cl; j++) {
                const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]);
                if (pint) {
                    int.push(pint);
                }
            }
            if (int.length == 0) { // 0 intersections, inside or outside?
                if (diff != p.inside(ls.p1)) {
                    ndp.push(ls);
                }
            } else {
                int.push(ls.p1); int.push(ls.p2);
                // order intersection points on line ls.p1 to ls.p2
                const cmp = sub2(ls.p2,ls.p1);
                int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp));
                
                for (let j=0; j<int.length-1; j++) {
                    if (!equal2(int[j], int[j+1]) && 
                        diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) {
                        ndp.push(new LineSegment(int[j], int[j+1]));
                    }
                }
            }
        }
        this.dp = ndp;
        return this.dp.length > 0;
    }
}

// vec2 functions
const equal2=(a,b)=>0.001>dist_sqr2(a,b);
const scale2=(a,b)=>[a[0]*b,a[1]*b];
const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]];
const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]];
const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1];
const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]);
const segment_intersect2=(a,b,d,c)=>{
    const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]);
    if(0==e)return false;
    c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e;
    d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e;
    return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false;
}
// vec3 functions
const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b];
const len3=(a)=>Math.sqrt(dot3(a,a));
const normalize3=(a)=>scale3(a,1/len3(a));
const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]];
const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]];
const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2];
const cross3=(a,b)=>[a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]];
// vec4 functions
const transform4=(a,b)=>{
    const d=new Float32Array(4);
    for(let c=0;4>c;c++)d[c]=b[c]*a[0]+b[c+4]*a[1]+b[c+8]*a[2]+b[c+12];
    return d;
}
// mat4 functions
const lookAt4m=(a,b,d)=>{ // pos, lookAt, up
    const c=new Float32Array(16);
    b=normalize3(sub3(a,b));
    d=normalize3(cross3(d,b));
    const e=normalize3(cross3(b,d));
    c[0]=d[0];c[1]=e[0];c[2]=b[0];c[3]=0;
    c[4]=d[1];c[5]=e[1];c[6]=b[1];c[7]=0;
    c[8]=d[2];c[9]=e[2];c[10]=b[2];c[11]=0;
    c[12]=-(d[0]*a[0]+d[1]*a[1]+d[2]*a[2]);
    c[13]=-(e[0]*a[0]+e[1]*a[1]+e[2]*a[2]);
    c[14]=-(b[0]*a[0]+b[1]*a[1]+b[2]*a[2]);
    c[15]=1;
    return c;
}
const multiply4m=(a,b)=>{
    const d=new Float32Array(16);
    for(let c=0;16>c;c+=4)
        for(let e=0;4>e;e++)
            d[c+e]=b[c+0]*a[0+e]+b[c+1]*a[4+e]+b[c+2]*a[8+e]+b[c+3]*a[12+e];
    return d;
}
const perspective4m=(a,b)=>{ // fovy, aspect
    const c=(new Float32Array(16)).fill(0,0);
    c[5]=1/Math.tan(a/2);
    c[0]=c[5]/b;
    c[10]=c[11]=-1;
    return c;
}


function FlyEyeFactory(turtle, gridSize, gridTopLeft, gridBottomRight, gridMargin, sampleTopLeft, sampleBottomRight, sampleTileSizeFraction) {
    const sampleWidth = sampleBottomRight[0] - sampleTopLeft[0];
    const sampleHeight = sampleBottomRight[1] - sampleTopLeft[1];
    
    const tileWidth = sampleWidth * sampleTileSizeFraction;
    const tileHeight = sampleHeight * sampleTileSizeFraction;
    
    const sampleCenterTopLeft = V.add(sampleTopLeft, [tileWidth/2, tileHeight/2]);
    const columnIncrement = gridSize == 1? 0: (sampleWidth - tileWidth) / (gridSize - 1);
    const rowIncrement = gridSize == 1? 0: (sampleHeight - tileHeight) / (gridSize - 1);
    
    const gridWidth = gridBottomRight[0] - gridTopLeft[0];
    const gridHeight = gridBottomRight[1] - gridTopLeft[1];
    
    const gridTileWidth = (gridWidth - gridMargin * Math.max(1, gridSize - 1)) / gridSize;
    const gridTileHeight = (gridHeight - gridMargin * Math.max(1, gridSize - 1)) / gridSize;

    const flyEyeSegments = [];
    for(let c = 0; c < gridSize; c++) {
        for(let r = 0; r < gridSize; r++) {
            flyEyeSegments.push(
                new SquareLens(
                    turtle, [
                        V.add(sampleTopLeft, [columnIncrement * c, rowIncrement * r]),
                        V.add(
                            V.add(sampleTopLeft, [columnIncrement * c, rowIncrement * r]),
                            [tileWidth, tileHeight]
                        )
                    ], [
                        V.add(gridTopLeft, [c * (gridTileWidth + gridMargin), r * (gridTileHeight + gridMargin)]),
                        V.add(
                            V.add(gridTopLeft, [c * (gridTileWidth + gridMargin), r * (gridTileHeight + gridMargin)]),
                            [gridTileWidth, gridTileHeight]
                        )
                    ],
                    (c == 0? GRID.LEFT: 0) | (r == 0? GRID.TOP: 0) |
                    (c == gridSize - 1? GRID.RIGHT: 0) | (r == gridSize - 1? GRID.BOTTOM: 0)
                )
            );
        }
    }
    return flyEyeSegments;
}

function ObservableTurtle(x, y) {
    class ObservableTurtle extends Turtle {
        constructor(x, y) {
            super(x, y);
            this.observers = [];
        }
        goto(x, y) {
            const isDown = this.isdown();
            const from = this.pos();
            this.up();
            super.goto(x, y);
            if(isDown) {
                this.notifyObservers(from, this.pos());
                this.down();
            }
        }
        registerObserver(o) {
            return this.observers.push(o) - 1;
        }
        notifyObservers(...data) {
            this.observers.forEach(o => o.update(...data))
        }
    }
    return new ObservableTurtle(x, y);
}


function SquareLens(turtleToObserve, lookAt, projectTo, edge = 0, projector = null) {
    class SquareLens {
        constructor(turtleToObserve, lookAt, projectTo, bottomOrRight, projector) {
            this.turtleToObserve = turtleToObserve;
            this.turtleToObserve.registerObserver(this);
            this.edge = edge;
            this.projector = projector == null? new Turtle(): projector;

            this.lookAt = lookAt;
            this.projectTo = projectTo;

            this.midLookAt = V.add(this.lookAt[0], V.scale(V.sub(...this.lookAt.map(l => l).reverse()), .5));
            this.midProjectTo = V.add(this.projectTo[0], V.scale(V.sub(...this.projectTo.map(l => l).reverse()), .5));
            
            this.lookAtBox = [[0, 0], [1, 0], [1, 1], [0, 1]].map(e => e.map((w, i) => this.lookAt[e[i]][i]));
            this.lookAtBoxEdges = this.lookAtBox.map((e, i, a) => [e, V.sub(a[(i+1)%a.length], e)]);

            this.ratios = lookAt[0].map((e, i, a) => (projectTo[1][i] - projectTo[0][i])/(lookAt[1][i] - lookAt[0][i]));
        }
        update(...data) {
            let from = data[0];
            let to = data[1];

            const intersections = this.lookAtBoxEdges.map(edge => Intersection.info(...edge, data[0], V.sub(to, from))).filter(int => int !== false && (0 <= int[1] && int[1] < 1 && 0 <= int[2] && int[2] <= 1));
            const insiders = data.map(pt => Intersection.inside(this.lookAtBox, pt));

            const collinear = (() => {
            //check if segment from-to overlaps with border (collinear)
                if(from[0] == to[0]) { //vertical line
                    //make the line go bottom
                    let fromY = Math.min(from[1], to[1]);
                    let toY = Math.max(from[1], to[1]);
                    if(fromY < this.lookAt[0][1] && toY < this.lookAt[0][1] ||
                       fromY > this.lookAt[1][1] && toY > this.lookAt[1][1]) {
                        return false;
                    }
                    if(from[0] != this.lookAt[0][0] && from[0] != this.lookAt[1][0]) {
                        return false;
                    }
                    if(from[0] == this.lookAt[1][0] &&//right lookat
                        (this.edge & GRID.RIGHT) == 0) { //if it's not the right lens
                            return false; //skip collinear
                    }

                    if(fromY <= this.lookAt[0][1]) {
                        from = [from[0], this.lookAt[0][1]];
                    }
                    if(lookAt[1][1] <= toY) {
                        to = [from[0], this.lookAt[1][1]];
                    }
                    return true;
                } else if (from[1] == to[1]) { //horizontal line
                    //make the line go right
                    let fromX = Math.min(from[0], to[0]);
                    let toX = Math.max(from[0], to[0]);
                    if(fromX < this.lookAt[0][0] && toX < this.lookAt[0][0] ||
                       fromX > this.lookAt[1][0] && toX > this.lookAt[1][0]) {
                        return false;
                    }
                    if(from[1] != this.lookAt[0][1] && from[1] != this.lookAt[1][1]) {
                        return false;
                    }
                    if(from[1] == this.lookAt[1][1] &&//bottom lookat
                        (this.edge & GRID.BOTTOM) == 0) { //if it's not the bottom lens
                            return false; //skip collinear
                    }

                    if(fromX <= this.lookAt[0][0]) {
                        from = [this.lookAt[0][0], from[1]];
                    }
                    if(lookAt[1][0] <= toX) {
                        to = [this.lookAt[1][0], from[1]];
                    }
                    return true;
                }
                return false;
            })();
            
            if(!collinear && !insiders.every(i => i)) { //if not both inside
                if(intersections.length == 0) { //and not intersections
                    return; //bail
                }
                
                intersections.sort((a, b) => a[2] < b[2]? -1: 1);
                if(insiders.every(i => !i)) { //both outside
                    from = intersections[0][0];
                    to = intersections[intersections.length - 1][0];
                } else { //one inside
                    if(insiders[0]) {
                        to = intersections[intersections.length - 1][0];
                    } else {
                        from = intersections[0][0];
                    }
                }
            }
            
            this.projector.jump(V.add(V.mul(V.sub(from, this.midLookAt), this.ratios), this.midProjectTo));
            this.projector.goto(V.add(V.mul(V.sub(to, this.midLookAt), this.ratios), this.midProjectTo));
        }
    }
    return new SquareLens(turtleToObserve, lookAt, projectTo, edge, projector);
}

// Below is automatically maintained by Turtlelib 1.0
// Changes below this comment might interfere with its correct functioning.
function turtlelib_init() {
	turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math();
	turtlelib_ns_c5f8fa95ed_Jurgen_Intersection();
}
// Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"}
function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() {
/////////////////////////////////////////////////////////
// Vector functions - Created by Jurgen Westerhof 2024 //
/////////////////////////////////////////////////////////
class Vector {
    static add  (a,b) { return a.map((v,i)=>v+b[i]); }
    static sub  (a,b) { return a.map((v,i)=>v-b[i]); }
    static mul  (a,b) { return a.map((v,i)=>v*b[i]); }
    static div  (a,b) { return a.map((v,i)=>v/b[i]); }
    static scale(a,s) { return a.map(v=>v*s); }

    static det(m)                { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); }
    static angle(a)              { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading
    static rot2d(angle)          { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; }
    static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; }
    static trans(matrix,a)       { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); }
    //Mirror vector a in a ray through [0,0] with direction mirror
    static mirror2d(a,mirror)    { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); }

    static equals(a,b)   { return !a.some((e, i) => e != b[i]); }
    static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); }
    static norm  (a)     { return this.scale(a,1/this.len(a)); }
    static len   (a)     { return Math.hypot(...a); }
    static lenSq (a)     { return a.reduce((a,c)=>a+c**2,0); }
    static lerp  (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); }
    static dist  (a,b)   { return Math.hypot(...this.sub(a,b)); }
    
    static dot  (a,b)   { return a.reduce((a,c,i) => a+c*b[i], 0); }
    static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); }
    
    static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) };
    static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;});
    }
}
this.V = Vector;
}
// Turtlelib Jurgen Vector Math v 4 - end
// Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"}
function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() {
///////////////////////////////////////////////////////////////
// Intersection functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Intersection {
    //a-start, a-direction, b-start, b-direction
    //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction
    static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; }
    static ray(a, b, c, d) { return this.info(a, b, c, d); }
    static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd?   i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;}
    static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));}
    static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; }
    static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;}
}
this.Intersection = Intersection;
}
// Turtlelib Jurgen Intersection v 4 - end