A first experiment to draw a procedural city of cubic building blocks. The city will be different each reload / re-compile. Try out different options by changing the settings at the top of the code.
In a next turtle, I will clean up and optimize the code and add more variety to the buildings.
#city #polygons #3D
Log in to post a comment.
// Forked from "Cubic cityscape #1" by reinder // https://turtletoy.net/turtle/789cce3829 // Cubic cityscape #1. Created by Reinder Nijhoff 2018 // @reindernijhoff // // https://turtletoy.net/turtle/789cce3829 // // Try different settings here: const useOrthoGraphicPerspective = Math.random() > .5; const towerness = .25; // [0, 1) const topDownView = Math.random() > .5; const addHatching = Math.random() > .5; // A lot of ugly code: const gridSize = 10; //min=1 max=50 step=1 const projectionMargin = 2; //min=0 max=10 step=.1 const segmentCapture = .16; // min=.01 max=1 step=.01 const captureWidth = 200; //min=10 max=200 step=1 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); const GRID = { TOP: 1, RIGHT: 2, BOTTOM: 4, LEFT: 8 }; // Global code will be evaluated once. turtlelib_init(); const turtle = new ObservableTurtle(); const sls = FlyEyeFactory( turtle, gridSize,// gridSize, [projectionMargin-100, projectionMargin-100], //gridTopLeft, [100-projectionMargin, 100-projectionMargin], //gridBottomRight, projectionMargin, //gridMargin, [-captureWidth/2, -captureWidth/2], //sampleTopLeft, [captureWidth/2, captureWidth/2], //sampleBottomRight, segmentCapture//sampleTileSizeFraction ); let viewProjectionMatrix; let polygonList = []; const lineSegmentsDrawn = []; // keep track of all line segments. Don't draw duplicates const width = 30; const depth = 70; const camPos = [12,topDownView?13.5:-10.5,-2.3]; const camLookat = [19,topDownView?9.5:-6,-10]; function walk(i) { if (i == 0) { setupCamera(); } for (let j=0; j<width; j++) { const x = (width - j + (i+1)/2|0) - (width-20); const z = -(j + i/2|0) + (width-20); const y = (x-z-40); // 2 drawHome(turtle, [x,y,z], true); } return i < depth; } function createWall() { return[createSquare([0,0,0], [1,1,0])]; // wall } function createWallDecoration(floorLevel) { const p = []; for (let i=0; i<2; i++) { const x = .2+i*.4; if (Math.random() > .5) { p.push(createSquare([x,0.3,0], [x+.2,.7,0])); // window } else if (floorLevel && Math.random() > .7) { p.push(createSquare([x,0,0], [x+.2,.7,0])); // door } } return p; } function createRoof() { const p = []; let flat = false; if (Math.random() > .5) { p.push(createSquare([0,1,0], [1,1,-1])); // roof flat = true; } else { p.push(createSquare([0,1,0], [1,1.5,-.5])); // roof p.push(createSquare([0,1,-1], [1,1.5,-.5]).reverse()); // roof p.push([[0,1,-1],[0,1.5,-.5],[0,1,0]]); p.push([[1,1,0],[1,1.5,-.5],[1,1,-1]]); if (Math.random() > .5) { return {flatRoof: false, flipped: true, polygons: flipxz(p)}; } } return {flatRoof: flat, flipped: false, polygons: p}; } function drawHome(turtle, loc, floorLevel) { let p = []; const occluders = []; let roof = false; p = p.concat(center(createWall(), loc)); p = p.concat(center(flipxz(createWall()), loc)); p = p.concat(center(createWallDecoration(floorLevel), loc)); p = p.concat(center(flipxz(createWallDecoration(floorLevel)), loc)); if (Math.random() > 1-towerness) { // extra level drawHome(turtle, add3(loc,[0,1,0]), false); } else { roof = createRoof(); p = p.concat(center(roof.polygons, loc)); } for (let i=0; i<p.length; i++) { const polygon = new Polygon(); const vl = p[i]; const vd = useOrthoGraphicPerspective ? sub3(camLookat, camPos) : sub3(scale3(add3(vl[0],vl[2]),.5), camPos); let normal = cross3(sub3(vl[1],vl[0]),sub3(vl[2],vl[0])); if (dot3(normal,vd) < 0 ) { continue; } for (let j=0; j<vl.length; j++) { const v = transform4(vl[j], viewProjectionMatrix); if (useOrthoGraphicPerspective) { polygon.cp.push([(v[0]*2.5), -(v[1]*2.5)]); } else { polygon.cp.push([(v[0]/v[3]*50), -(v[1]/v[3]*50)]); } } let vis = false; for (let j=0; j<polygon.cp.length; j++) { if (Math.abs(polygon.cp[j][0]) < 100 && Math.abs(polygon.cp[j][1]) < 100) { vis = true; } } if (!vis) { continue; } if (i<2) { // first two are walls polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1])); if (roof && !topDownView) { if (roof.flatRoof || (roof.flipped && i == 1) || (!roof.flipped && i == 0)) { polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2])); } } polygon.dp.push(new LineSegment(polygon.cp[2], polygon.cp[3])); } else if (polygon.cp.length === 3) { // roof polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1])); polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2])); } else { polygon.addOutline(); } if (addHatching) { normal = normalize3(normal); if (normal[2] < 0) { polygon.addHatching(.85, .75); } } const occluder = drawPolygon(turtle, polygon); if (i<2) { // first two are walls occluders.push(polygon); } else if (occluder) { occluders.push(occluder); } } polygonList = polygonList.concat(occluders); } function drawPolygon(turtle, p) { for (let j=0; j<polygonList.length; j++) { if(!p.boolean(polygonList[j])) { return; } } p.draw(turtle); return p; } function setupCamera() { viewMatrix = lookAt4m(camPos, camLookat, [0,1,0]); projectionMatrix = perspective4m(0.4, 1); viewProjectionMatrix = multiply4m(projectionMatrix, viewMatrix); } // helper functions function flipxz(p) { for (let i=0; i<p.length; i++) { const vl = p[i]; for (let j=0; j<vl.length; j++) { p[i][j] = [-vl[j][2],vl[j][1],vl[j][0]-1]; } } return p; } function center(p, loc) { const ret = []; for (let i=0; i<p.length; i++) { const vl = p[i], v = []; for (let j=0; j<vl.length; j++) { v.push(add3(vl[j], loc)); } ret.push(v); } return ret; } function createSquare(lb, rt) { return [lb,[lb[0],rt[1],rt[2]],rt,[rt[0],lb[1],lb[2]]]; } // polygon functions class LineSegment { constructor(p1, p2) { this.p1 = p1; this.p2 = p2; } unique() { for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) { const ls = lineSegmentsDrawn[i]; if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) || (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){ return false; } } lineSegmentsDrawn.push(this); return true; } } class Polygon { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw: array of linesegments } addOutline(s=0) { for (let i=s, l=this.cp.length; i<l; i++) { this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l])); } } createPoly(x,y,c,r,a) { this.cp = []; for (let i=0; i<c; i++) { this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] ); } } addHatching(a,d) { // todo, create a tight bounding polygon, for now fill screen const tp = new Polygon(); tp.createPoly(0,0,4,200,Math.PI*.5); const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } tp.boolean(this, false); this.dp = this.dp.concat(tp.dp); } draw(t) { if (this.dp.length ==0) { return; } for (let i=0, l=this.dp.length; i<l; i++) { const d = this.dp[i]; if (d.unique()) { if (!equal2(d.p1, t.pos())) { t.penup(); t.goto(d.p1); t.pendown(); } t.goto(d.p2); } } } inside(p) { // find number of intersections from p to far away - if even you're outside const p1 = [0, -1000]; let int = 0; for (let i=0, l=this.cp.length; i<l; i++) { if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) { int ++; } } return int & 1; } boolean(p, diff = true) { // very naive polygon diff algorithm - made this up myself const ndp = []; for (let i=0, l=this.dp.length; i<l; i++) { const ls = this.dp[i]; // find all intersections with clip path const int = []; for (let j=0, cl=p.cp.length; j<cl; j++) { const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]); if (pint) { int.push(pint); } } if (int.length == 0) { // 0 intersections, inside or outside? if (diff != p.inside(ls.p1)) { ndp.push(ls); } } else { int.push(ls.p1); int.push(ls.p2); // order intersection points on line ls.p1 to ls.p2 const cmp = sub2(ls.p2,ls.p1); int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp)); for (let j=0; j<int.length-1; j++) { if (!equal2(int[j], int[j+1]) && diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) { ndp.push(new LineSegment(int[j], int[j+1])); } } } } this.dp = ndp; return this.dp.length > 0; } } // vec2 functions const equal2=(a,b)=>0.001>dist_sqr2(a,b); const scale2=(a,b)=>[a[0]*b,a[1]*b]; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]]; const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1]; const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); const segment_intersect2=(a,b,d,c)=>{ const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } // vec3 functions const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b]; const len3=(a)=>Math.sqrt(dot3(a,a)); const normalize3=(a)=>scale3(a,1/len3(a)); const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]]; const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]]; const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; const cross3=(a,b)=>[a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]]; // vec4 functions const transform4=(a,b)=>{ const d=new Float32Array(4); for(let c=0;4>c;c++)d[c]=b[c]*a[0]+b[c+4]*a[1]+b[c+8]*a[2]+b[c+12]; return d; } // mat4 functions const lookAt4m=(a,b,d)=>{ // pos, lookAt, up const c=new Float32Array(16); b=normalize3(sub3(a,b)); d=normalize3(cross3(d,b)); const e=normalize3(cross3(b,d)); c[0]=d[0];c[1]=e[0];c[2]=b[0];c[3]=0; c[4]=d[1];c[5]=e[1];c[6]=b[1];c[7]=0; c[8]=d[2];c[9]=e[2];c[10]=b[2];c[11]=0; c[12]=-(d[0]*a[0]+d[1]*a[1]+d[2]*a[2]); c[13]=-(e[0]*a[0]+e[1]*a[1]+e[2]*a[2]); c[14]=-(b[0]*a[0]+b[1]*a[1]+b[2]*a[2]); c[15]=1; return c; } const multiply4m=(a,b)=>{ const d=new Float32Array(16); for(let c=0;16>c;c+=4) for(let e=0;4>e;e++) d[c+e]=b[c+0]*a[0+e]+b[c+1]*a[4+e]+b[c+2]*a[8+e]+b[c+3]*a[12+e]; return d; } const perspective4m=(a,b)=>{ // fovy, aspect const c=(new Float32Array(16)).fill(0,0); c[5]=1/Math.tan(a/2); c[0]=c[5]/b; c[10]=c[11]=-1; return c; } function FlyEyeFactory(turtle, gridSize, gridTopLeft, gridBottomRight, gridMargin, sampleTopLeft, sampleBottomRight, sampleTileSizeFraction) { const sampleWidth = sampleBottomRight[0] - sampleTopLeft[0]; const sampleHeight = sampleBottomRight[1] - sampleTopLeft[1]; const tileWidth = sampleWidth * sampleTileSizeFraction; const tileHeight = sampleHeight * sampleTileSizeFraction; const sampleCenterTopLeft = V.add(sampleTopLeft, [tileWidth/2, tileHeight/2]); const columnIncrement = gridSize == 1? 0: (sampleWidth - tileWidth) / (gridSize - 1); const rowIncrement = gridSize == 1? 0: (sampleHeight - tileHeight) / (gridSize - 1); const gridWidth = gridBottomRight[0] - gridTopLeft[0]; const gridHeight = gridBottomRight[1] - gridTopLeft[1]; const gridTileWidth = (gridWidth - gridMargin * Math.max(1, gridSize - 1)) / gridSize; const gridTileHeight = (gridHeight - gridMargin * Math.max(1, gridSize - 1)) / gridSize; const flyEyeSegments = []; for(let c = 0; c < gridSize; c++) { for(let r = 0; r < gridSize; r++) { flyEyeSegments.push( new SquareLens( turtle, [ V.add(sampleTopLeft, [columnIncrement * c, rowIncrement * r]), V.add( V.add(sampleTopLeft, [columnIncrement * c, rowIncrement * r]), [tileWidth, tileHeight] ) ], [ V.add(gridTopLeft, [c * (gridTileWidth + gridMargin), r * (gridTileHeight + gridMargin)]), V.add( V.add(gridTopLeft, [c * (gridTileWidth + gridMargin), r * (gridTileHeight + gridMargin)]), [gridTileWidth, gridTileHeight] ) ], (c == 0? GRID.LEFT: 0) | (r == 0? GRID.TOP: 0) | (c == gridSize - 1? GRID.RIGHT: 0) | (r == gridSize - 1? GRID.BOTTOM: 0) ) ); } } return flyEyeSegments; } function ObservableTurtle(x, y) { class ObservableTurtle extends Turtle { constructor(x, y) { super(x, y); this.observers = []; } goto(x, y) { const isDown = this.isdown(); const from = this.pos(); this.up(); super.goto(x, y); if(isDown) { this.notifyObservers(from, this.pos()); this.down(); } } registerObserver(o) { return this.observers.push(o) - 1; } notifyObservers(...data) { this.observers.forEach(o => o.update(...data)) } } return new ObservableTurtle(x, y); } function SquareLens(turtleToObserve, lookAt, projectTo, edge = 0, projector = null) { class SquareLens { constructor(turtleToObserve, lookAt, projectTo, bottomOrRight, projector) { this.turtleToObserve = turtleToObserve; this.turtleToObserve.registerObserver(this); this.edge = edge; this.projector = projector == null? new Turtle(): projector; this.lookAt = lookAt; this.projectTo = projectTo; this.midLookAt = V.add(this.lookAt[0], V.scale(V.sub(...this.lookAt.map(l => l).reverse()), .5)); this.midProjectTo = V.add(this.projectTo[0], V.scale(V.sub(...this.projectTo.map(l => l).reverse()), .5)); this.lookAtBox = [[0, 0], [1, 0], [1, 1], [0, 1]].map(e => e.map((w, i) => this.lookAt[e[i]][i])); this.lookAtBoxEdges = this.lookAtBox.map((e, i, a) => [e, V.sub(a[(i+1)%a.length], e)]); this.ratios = lookAt[0].map((e, i, a) => (projectTo[1][i] - projectTo[0][i])/(lookAt[1][i] - lookAt[0][i])); } update(...data) { let from = data[0]; let to = data[1]; const intersections = this.lookAtBoxEdges.map(edge => Intersection.info(...edge, data[0], V.sub(to, from))).filter(int => int !== false && (0 <= int[1] && int[1] < 1 && 0 <= int[2] && int[2] <= 1)); const insiders = data.map(pt => Intersection.inside(this.lookAtBox, pt)); const collinear = (() => { //check if segment from-to overlaps with border (collinear) if(from[0] == to[0]) { //vertical line //make the line go bottom let fromY = Math.min(from[1], to[1]); let toY = Math.max(from[1], to[1]); if(fromY < this.lookAt[0][1] && toY < this.lookAt[0][1] || fromY > this.lookAt[1][1] && toY > this.lookAt[1][1]) { return false; } if(from[0] != this.lookAt[0][0] && from[0] != this.lookAt[1][0]) { return false; } if(from[0] == this.lookAt[1][0] &&//right lookat (this.edge & GRID.RIGHT) == 0) { //if it's not the right lens return false; //skip collinear } if(fromY <= this.lookAt[0][1]) { from = [from[0], this.lookAt[0][1]]; } if(lookAt[1][1] <= toY) { to = [from[0], this.lookAt[1][1]]; } return true; } else if (from[1] == to[1]) { //horizontal line //make the line go right let fromX = Math.min(from[0], to[0]); let toX = Math.max(from[0], to[0]); if(fromX < this.lookAt[0][0] && toX < this.lookAt[0][0] || fromX > this.lookAt[1][0] && toX > this.lookAt[1][0]) { return false; } if(from[1] != this.lookAt[0][1] && from[1] != this.lookAt[1][1]) { return false; } if(from[1] == this.lookAt[1][1] &&//bottom lookat (this.edge & GRID.BOTTOM) == 0) { //if it's not the bottom lens return false; //skip collinear } if(fromX <= this.lookAt[0][0]) { from = [this.lookAt[0][0], from[1]]; } if(lookAt[1][0] <= toX) { to = [this.lookAt[1][0], from[1]]; } return true; } return false; })(); if(!collinear && !insiders.every(i => i)) { //if not both inside if(intersections.length == 0) { //and not intersections return; //bail } intersections.sort((a, b) => a[2] < b[2]? -1: 1); if(insiders.every(i => !i)) { //both outside from = intersections[0][0]; to = intersections[intersections.length - 1][0]; } else { //one inside if(insiders[0]) { to = intersections[intersections.length - 1][0]; } else { from = intersections[0][0]; } } } this.projector.jump(V.add(V.mul(V.sub(from, this.midLookAt), this.ratios), this.midProjectTo)); this.projector.goto(V.add(V.mul(V.sub(to, this.midLookAt), this.ratios), this.midProjectTo)); } } return new SquareLens(turtleToObserve, lookAt, projectTo, edge, projector); } // Below is automatically maintained by Turtlelib 1.0 // Changes below this comment might interfere with its correct functioning. function turtlelib_init() { turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math(); turtlelib_ns_c5f8fa95ed_Jurgen_Intersection(); } // Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"} function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() { ///////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // ///////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static equals(a,b) { return !a.some((e, i) => e != b[i]); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) }; static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;}); } } this.V = Vector; } // Turtlelib Jurgen Vector Math v 4 - end // Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"} function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() { /////////////////////////////////////////////////////////////// // Intersection functions - Created by Jurgen Westerhof 2024 // /////////////////////////////////////////////////////////////// class Intersection { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;} static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));} static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; } static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;} } this.Intersection = Intersection; } // Turtlelib Jurgen Intersection v 4 - end