Bamboo tree forest
Log in to post a comment.
const turtle = new Turtle(); const polygons = new Polygons(); const total = 20; //min=5,max=80,step=1 const seed = 1; //min=1,max=100,step=1 const random = new Random(seed); const order = [...Array(total).keys()]; random.shuffle(order); function walk(i) { let x = -95 + (order[i] / total) * 200; let y = random.range(100, 150); const size = random.range(22, 25); const dir = random.range(-0.02, 0.02); let angle = random.range(-0.1, 0.1); let trunkInterval = random.range(3, 10) | 0; let c = 0; while (y > -100) { c ++; x += Math.sin(angle) * size; y -= Math.cos(angle) * size; if (random.next() > 0.8) { const leafs = []; if (random.next() > 0.4) leafs.push(() => drawLeaf(turtle, x + random.range(-2,0), y, Math.PI + random.range(0,0.5))); if (random.next() > 0.4) leafs.push(() => drawLeaf(turtle, x + random.range(-2,0), y, Math.PI + random.range(0.5,0.85))); if (random.next() > 0.4) leafs.push(() => drawLeaf(turtle, x + random.range(0,2), y, -random.range(0,0.5))); if (random.next() > 0.4) leafs.push(() => drawLeaf(turtle, x + random.range(0,2), y, -random.range(0.5,0.85))); if (random.next() > 0.1) leafs.push(() => drawLeaf(turtle, x, y, -Math.PI/2 + random.range(-0.2, 0.2))); random.shuffle(leafs); leafs.forEach(leaf => leaf()); } if (y < 25 && c % trunkInterval == 0) { drawTrunkWithLeaves(turtle, x, y + 1) } drawStump(turtle, x, y, lerp(7, 1, i / total), size, angle); if (random.next() > 0.95) drawLeaf(turtle, x, y, 0.7 * random.next()); if (random.next() > 0.95) drawLeaf(turtle, x, y, -0.7 * random.next()); if (y < 50 && random.next() > 0.9) { drawTrunkWithLeaves(turtle, x, y + 1, angle + random.either(Math.PI/2, -Math.PI/2)) } angle += dir; } return i < total; } function drawTrunkWithLeaves(turtle, x, y, startAngle, depth = 0) { const size = depth == 0 ? random.range(0.8, 1.3) : (depth == 1 ? random.range(0.6, 0.9) : random.range(0.3, 0.6)); const length = depth == 0 ? random.range(10,25) : random.range(5,10); const dir = random.range(0.02, 0.03) * random.either(-1, 1); let angle = Math.PI + random.range(0.4, 1.3) * random.either(-1, 1);; const line = polygons.create(); //const translated = (p) => transform(p, x, y, 1, 1, -angle); let leafScale = 1.0; if (depth == 1) leafScale = 0.85; else if (depth == 2) leafScale = 0.5; let c = 0; while (c < length) { x += Math.sin(angle) * size; y += Math.cos(angle) * size; const t = 1-c/length; let thickness = lerp(0.5, 0.25, t*t); let x1 = x + Math.sin(angle + Math.PI/2) * thickness * leafScale; let y1 = y + Math.cos(angle + Math.PI/2) * thickness * leafScale; line.addPoints([x1,y1]); if (depth < 2 && c > length / 6 && c < length - length / 4 && c % 4 == 1) { if (random.next() > 0.7) drawTrunkWithLeaves(turtle, x, y, angle + (Math.PI/2 * random.either(-1, 1)), depth + 1); } if (c > length / 3 && c < length - length / 10 && c % 8 == 2) { if (random.either()) drawLeaf(turtle, x, y, angle + random.range(-0.5, -0.5), random.range(0.4, 0.7) * leafScale ) if (random.either()) drawLeaf(turtle, x, y, angle + Math.PI + random.range(0.5, 0.5), random.range(0.4, 0.7) * leafScale ) } angle += dir; c++; } const leafs = []; if (random.either()) { leafs.push(() =>drawLeaf(turtle, x, y, angle - Math.PI/2 + random.range(-0.8, -0.3), random.range(0.4, 0.7) * leafScale, 0)); leafs.push(() =>drawLeaf(turtle, x, y, angle - Math.PI/2 + random.range(0.3, 0.8), random.range(0.4, 0.7) * leafScale, 0)); } else { leafs.push(() =>drawLeaf(turtle, x, y, angle - Math.PI/2 + random.range(0.1, -0.1), random.range(0.6, 0.7) * leafScale, 0)); } if (random.either()) { leafs.push(() => drawLeaf(turtle, x, y, angle - Math.PI/2 + random.range(0.1, -0.1), random.range(0.6, 0.7) * leafScale, 0)); } random.shuffle(leafs); leafs.forEach(leaf => leaf()); while (c > 0) { x -= Math.sin(angle) * size; y -= Math.cos(angle) * size; const t = c/length; let thickness = lerp(0.5, 0.25, t*t); let x2 = x + Math.sin(angle - Math.PI / 2) * thickness * leafScale; let y2 = y + Math.cos(angle - Math.PI / 2) * thickness * leafScale; line.addPoints([x2,y2]); angle -= dir; c--; } line.addOutline(); polygons.draw(turtle, line); } function drawStump(turtle, x, y, width, height, angle) { const stump = polygons.create(); const translated = (p) => transform(p, x, y, 1, 1, -angle); stump.addPoints( translated([-width / 2 - 0.65, 0]), translated([width / 2 + 0.65, 0]), translated([width / 2, height]), translated([-width / 2, height]), translated([-width / 2 - 0.65, 0]) ); stump.addOutline(); polygons.draw(turtle, stump); } function drawLeaf(turtle, x, y, angle, scaleX = 0.7 + random.range(-0.1, -0.1), maxTrunkSize = 5) { const scaleY = scaleX; const translated = (p) => transform(p, x, y, scaleX, scaleY, angle); const leaf = polygons.create(); const leafTrunkSize = random.range(0, maxTrunkSize); leaf.addPoints( translated([0, 0.5]), translated([leafTrunkSize, 0.5]), translated([leafTrunkSize + 1, -2]), translated([leafTrunkSize + 3, -3]), translated([leafTrunkSize + 4, -3]), translated([leafTrunkSize + 7, -3]), translated([leafTrunkSize + 10, -2]), translated([leafTrunkSize + 15, -1]), translated([leafTrunkSize + 20, 0]), translated([leafTrunkSize + 15, 1]), translated([leafTrunkSize + 10, 2]), translated([leafTrunkSize + 5, 3]), translated([leafTrunkSize + 4, 3]), translated([leafTrunkSize + 2, 3]), translated([leafTrunkSize + 1, 2]), translated([leafTrunkSize, 0]), translated([0, 0]), translated([20, 0]), translated([0, 0]), ); leaf.addOutline(); polygons.draw(turtle, leaf); } function transform(p, x, y, scaleX, scaleY, angle) { scale(p, scaleX, scaleY); rotate(p, angle); translate(p, x, y); return p; } function rotate(p, a) { const [px, py] = p; p[0] = px * Math.cos(a) + py * Math.sin(a); p[1] = py * Math.cos(a) - px * Math.sin(a); return p; } function translate(p, x, y) { p[0] += x; p[1] += y; return p; } function scale(p, x, y) { p[0] *= x; p[1] *= y; return p; } function lerp(a, b, t) { return a + (b - a) * t; } // Seeded random - Mulberry32 function Random(seed) { class Random { constructor(seed) { this.seed = seed; } next() { var t = this.seed += 0x6D2B79F5; t = Math.imul(t ^ t >>> 15, t | 1); t ^= t + Math.imul(t ^ t >>> 7, t | 61); return ((t ^ t >>> 14) >>> 0) / 4294967296; } range(from, to) { var r = this.next(); return from + (to - from) * r; } either(a = 0, b = 1, chance = 0.5) { return this.next() > chance ? a : b; } shuffle(arr) { for (let i = arr.length - 1; i > 0; i--) { const j = Math.floor(this.next() * (i + 1)); [arr[i], arr[j]] = [arr[j], arr[i]]; } return arr; } } return new Random(seed); } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; } //////////////////////////////////////////////////////////////// // Tortoise utility code (Minimal Turtle and Transforms) // https://turtletoy.net/turtle/102cbd7c4d //////////////////////////////////////////////////////////////// function Tortoise(x, y) { class Tortoise extends Turtle { constructor(x, y) { super(x, y); this.ps = Array.isArray(x) ? [...x] : [x || 0, y || 0]; this.transforms = []; } addTransform(t) { this.transforms.push(t); this.jump(this.ps); return this; } applyTransforms(p) { if (!this.transforms) return p; let pt = [...p]; this.transforms.map(t => { pt = t(pt); }); return pt; } goto(x, y) { const p = Array.isArray(x) ? [...x] : [x, y]; const pt = this.applyTransforms(p); if (this.isdown() && (this.pt[0]-pt[0])**2 + (this.pt[1]-pt[1])**2 > 4) { this.goto((this.ps[0]+p[0])/2, (this.ps[1]+p[1])/2); this.goto(p); } else { super.goto(pt); this.ps = p; this.pt = pt; } } position() { return this.ps; } } return new Tortoise(x,y); }