Log in to post a comment.
const treeHeight = 100 const strips = 4 const topy = -60 const dx = 12, dy = treeHeight / strips const sdx = 7.5, sdy = 9 Canvas.setpenopacity(1) const turtle = new Turtle() function walk(i) { if (i === 0) { drawStar() } const corners = treeStripCorners(i) const clip = createClip(corners) drawTreeStrip(i, corners, clip) drawShadow(i, corners, clip) return i < strips } function drawStar() { const star = new Polygon() const pt = [0, topy - 5] for (let j = 0; j < 10; j++) { const angle = j / 10 * Math.PI * 2 - Math.PI / 2 star.cp.push(add2(pt, scale2([Math.cos(angle), Math.sin(angle)], j % 2 ? 3 : 6))) } star.addOutline() star.draw(turtle) } function treeStripCorners(i) { const tl = [0 - i * dx, topy + i * dy], tr = [0 + i * dx, topy + i * dy] return { tl, tr, bl: add2(tl, [-dx, dy]), br: add2(tr, [dx, dy]) } } function createClip({tl, tr, br, bl}) { const clip = new Polygon() clip.cp.push(tl, tr, br, bl) return clip } function drawTreeStrip(i, {br, bl}, clip) { const poly = clip.clone() for (let j = 0; j < br[0] - bl[0]; j += i % 2 ? 2 : 4) { const start = i % 2 ? add2(bl, [j, 0.01]) // offset because of clipping bug at x = 0 : add2(br, [-j, 0.01]) const end = i % 2 ? add2(start, [dx, -dy]) : add2(start, [-dx, -dy]) poly.dp.push(new LineSegment(start, end)) } poly.boolean(clip, false) poly.draw(turtle) } function shadowOffs(xoffs) { const lift = map(xoffs, 0, dx * 10, 0, 1) return scale2([sdx, sdy], lift) } function drawShadow(i, {tl, tr, bl, br}, clip) { const shadow = new Polygon() const topOffs = shadowOffs(tr[0] - tl[0]) const botOffs = shadowOffs(br[0] - bl[0]) if (i % 2) { shadow.cp.push(add2(tl, topOffs), add2(bl, botOffs), lerp2(bl, br, 0.5)) } else { shadow.cp.push(tl, add2(tr, topOffs), add2(br, botOffs), lerp2(bl, br, i === strips ? 0 : 0.5)) } shadow.addHatching(-Math.PI / 6, 0.75) shadow.boolean(clip, true) shadow.draw(turtle) } // helpers function avg(items) { return items.reduce((acc, curr) => acc + curr, 0) / items.length } function map(v, min, max, omin, omax) { return omin + (v - min) / (max - min) * (omax - omin) } function clamp(v, min, max) { return Math.max(Math.min(v, max), min) } function lerp(a, b, fract) { return a + (b - a) * fract } function randomFrom(arr) { return arr[Math.floor(Math.random() * arr.length)] } function isWithin(x, min, max) { return min <= x && x <= max } // the following is copied from: https://turtletoy.net/turtle/789cce3829 let lineSegmentsDrawn = [] // polygon functions function LineSegment(p1, p2) { this.p1 = p1; this.p2 = p2; } LineSegment.prototype.unique = function() { for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) { const ls = lineSegmentsDrawn[i]; if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) || (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){ return false; } } lineSegmentsDrawn.push(this); return true; } function Polygon() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw: array of linesegments } Polygon.prototype.clone = function() { const p = new Polygon() p.cp = [...this.cp] p.dp = [...this.dp] return p } Polygon.prototype.addOutline = function(s=0) { for (let i=s, l=this.cp.length; i<l; i++) { this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l])); } } Polygon.prototype.createPoly = function(x,y,c,r,a) { this.cp = []; for (let i=0; i<c; i++) { this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] ); } } Polygon.prototype.addHatching = function(a,d) { // todo, create a tight bounding polygon, for now fill screen const tp = new Polygon(); tp.createPoly(0,0,4,200,Math.PI*.5); const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } tp.boolean(this, false); this.dp = this.dp.concat(tp.dp); } Polygon.prototype.draw = function(t) { if (this.dp.length ==0) { return; } for (let i=0, l=this.dp.length; i<l; i++) { const d = this.dp[i]; if (d.unique()) { if (!equal2(d.p1, t.pos())) { t.penup(); t.goto(d.p1); t.pendown(); } t.goto(d.p2); } } } Polygon.prototype.inside = function(p) { // find number of intersections from p to far away - if even you're outside const p1 = [0, -1000]; let int = 0; for (let i=0, l=this.cp.length; i<l; i++) { if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) { int ++; } } return int & 1; } Polygon.prototype.boolean = function(p, diff = true) { // very naive polygon diff algorithm - made this up myself const ndp = []; for (let i=0, l=this.dp.length; i<l; i++) { const ls = this.dp[i]; // find all intersections with clip path const int = []; for (let j=0, cl=p.cp.length; j<cl; j++) { const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]); if (pint) { int.push(pint); } } if (int.length == 0) { // 0 intersections, inside or outside? if (diff != p.inside(ls.p1)) { ndp.push(ls); } } else { int.push(ls.p1); int.push(ls.p2); // order intersection points on line ls.p1 to ls.p2 const cmp = sub2(ls.p2,ls.p1); int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp)); for (let j=0; j<int.length-1; j++) { if (!equal2(int[j], int[j+1]) && diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) { ndp.push(new LineSegment(int[j], int[j+1])); } } } } this.dp = ndp; return this.dp.length > 0; } // vec2 functions const equal2=(a,b)=>0.001>dist_sqr2(a,b); const scale2=(a,b)=>[a[0]*b,a[1]*b]; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]]; const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1]; const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); const segment_intersect2=(a,b,d,c)=>{ const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } function mag2([x, y]) { return Math.sqrt(x ** 2 + y ** 2) } function lerp2(a, b, f) { return [lerp(a[0], b[0], f), lerp(a[1], b[1], f)] }