A port to Tutletoy of something a made a long, long time ago. In a galaxy far, far away: edesign.nl/examples/gol/
en.wikipedia.org/wiki/conway%27s_game_of_life
Bonus: when exporting as an animated GIF enable 'Draw different frames.' to see your animation of Conway's game of life in action.
#cellularautomaton #cellular #automaton
Log in to post a comment.
const generations = 100; //min=0 max=750 step=1 Setting this to 750 will show you every frame when exporting to an animated GIF with a duration of 30s at 25fps, the default 100 has this for 10s at 10fps const dim = 80; //min=30 max=400 step=10 The size of the world const startObject = 0;//min=0 max=8 step=1 (Random, Glider, Gosper glider gun, F-pentomino, Spaceship, Pulsating explosion, Flower, B29, Tumbler) Which object to use as a starting position, see the wikipedia page for details const penSize = .15; // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); const steps = generations; // Global code will be evaluated once. init(); const turtle = new Turtle(); let grid = Array.from({length: dim}, () => Array.from({length: dim}, () => startObject == 0? Math.random() < .5: false)); const pxSize = 200 / dim; function getAliveNeighborCount(grid, x, y) { return [ [-1, -1], [0, -1], [1, -1], [-1, 0], , [1, 0], [-1, 1], [0, 1], [1, 1] ].reduce((a, c) => a + (grid[(grid.length+x+c[0])%grid.length][(grid[0].length+y+c[1])%grid[0].length] === true? 1: 0), 0); } const configs = [ //glider [[2, 0], [2, 1], [2, 2], [1, 2], [0, 1]], //gosper glider gun [[24,0],[22,1],[24,1],[12,2],[13,2],[20,2],[21,2],[34,2],[35,2],[11,3],[15,3],[20,3],[21,3],[34,3],[35,3],[0,4],[1,4],[10,4],[16,4],[20,4],[21,4],[0,5],[1,5],[10,5],[14,5],[16,5],[17,5],[22,5],[24,5],[10,6],[16,6],[24,6],[11,7],[15,7],[12,8],[13,8]], //f-pentomino [[1,0],[2,0],[0,1],[1,1],[1,2]], //spaceship [[1,0],[2,0],[3,0],[4,0],[0,1],[4,1],[4,2],[0,3],[3,3]], //pulsating explosion [[0,0],[2,0],[4,0],[0,1],[4,1],[0,2],[4,2],[0,3],[4,3],[0,4],[2,4],[4,4]], //flower [[3,0],[0,1],[1,1],[2,1],[4,1],[5,1],[6,1],[3,2]], //b29 [[7,0],[8,0],[9,0],[7,1],[0,2],[1,2],[2,2],[9,2],[0,3],[7,3],[9,3],[1,4],[6,4],[7,4],[9,4],[10,4],[11,4],[12,4],[3,5],[4,5],[5,5],[6,5],[8,5],[9,5],[10,5],[11,5],[12,5],[14,5],[15,5],[4,6],[5,6],[13,6],[14,6],[16,6]], //tumbler [[1,0],[2,0],[4,0],[5,0],[1,1],[2,1],[4,1],[5,1],[2,2],[4,2],[0,3],[2,3],[4,3],[6,3],[0,4],[2,4],[4,4],[6,4],[0,5],[1,5],[5,5],[6,5]], ] const useConfig = startObject - 1; if(startObject > 0) { const [w,h] = configs[useConfig].reduce((a, c) => [Math.max(a[0], c[0]), Math.max(a[1], c[1])], [-1, -1]); for(let i = 0; i < configs[useConfig].length; i++) { grid[((dim - w)/2|0) + configs[useConfig][i][0]][((dim - h)/2|0) + configs[useConfig][i][1]] = true; } } const grids = [grid]; for(let i = 0; i < steps; i++) { grids.push(grid.map(v => v.map(e => e))); grids[0].forEach((e, x, a) => grids[0][x].forEach((e, y, a) => { const nbs = getAliveNeighborCount(grids[grids.length - 2], x, y); if(grids[grids.length - 2][x][y]) { grids[grids.length - 1][x][y] = nbs == 2 || nbs == 3; } else { grids[grids.length - 1][x][y] = nbs == 3; } })); } // The walk function will be called until it returns false. function walk(i, t) { for(let j = 0; j < (dim**2-1); j++) { const x = j % dim; const y = j / dim | 0; if(grids[(grids.length - 1)*t|0][x][y] === true) { drawPixel([(x+.5)*pxSize - 100, (y+.5)*pxSize - 100], 1, penSize, pxSize); } } return false; } function drawPixel(location, hatchDirection=0, hatchDistance=1, size=10) { const vertices = [[-.5,-.5],[.5,-.5],[.5,.5],[-.5,.5]].map(pt => V.add(location, V.scale(pt, size))); const rot = V.rot2d(hatchDirection); const invRot = V.rot2d(-hatchDirection); const [from, to] = [ vertices.map(pt => V.trans(invRot, pt)) .reduce((a, c) => [Math.min(a[0], c[1]), Math.max(a[1], c[1])], [Number.MAX_SAFE_INTEGER, Number.MIN_SAFE_INTEGER]) ].map(yMinMax => [Math.floor(yMinMax[0]/hatchDistance), Math.ceil(yMinMax[1]/hatchDistance)]).pop().map(v => v * hatchDistance); for(let y = from; y <= to; y += hatchDistance) { const line = [[-100*Math.SQRT2, y], [100*Math.SQRT2, y]].map(pt => V.trans(rot, pt)); const is = vertices.map((e,i,a) => Intersection.segment(...line, e, a[(i+1)%a.length])).filter(v => v); if(is.length > 0 && is.length % 2 == 0) { PT.draw(turtle, is); } } } function init() { /////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // https://turtletoy.net/turtle/d068ad6040 /////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static equals(a,b) { return !a.some((e, i) => e != b[i]); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } } this.V = Vector; class Intersection2D { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;} static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));} static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; } static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = null;} else if (result.point_1.x === result.point_2.x && result.point_1.y === result.point_2.y) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;} } this.Intersection = Intersection2D; class PathTools { static bezier(p1, cp1, cp2, p2, steps = null) {steps = (steps === null? (V.len(V.sub(cp1, p1)) + V.len(V.sub(cp2, cp1)) + V.len(V.sub(p2, cp2))) | 0: steps) - 1;return Array.from({length: steps + 1}).map((v, i, a, f = i/steps) => [[V.lerp(p1, cp1, f),V.lerp(cp1, cp2, f),V.lerp(cp2, p2, f)]].map(v => V.lerp(V.lerp(v[0], v[1], f), V.lerp(v[1], v[2], f), f))[0]);} // https://stackoverflow.com/questions/18655135/divide-bezier-curve-into-two-equal-halves#18681336 static splitBezier(p1, cp1, cp2, p2, t=.5) {const e = V.lerp(p1, cp1, t);const f = V.lerp(cp1, cp2, t);const g = V.lerp(cp2, p2, t);const h = V.lerp(e, f, t);const j = V.lerp(f, g, t);const k = V.lerp(h, j, t);return [[p1, e, h, k], [k, j, g, p2]];} static circular(radius,verticeCount,rotation=0) {return Array.from({length: verticeCount}).map((e,i,a,f=i*2*Math.PI/verticeCount+rotation) => [radius*Math.cos(f),radius*Math.sin(f)])} static circle(r){return this.circular(r,Math.max(12, r*2*Math.PI|0));} static arc(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); } static draw(turtle, path) {path.forEach((pt, i) => turtle[i==0?'jump':'goto'](pt));} static drawTour(turtle, path) {this.draw(turtle, path.concat([path[0]]));} static drawPoint(turtle, pt, r = .1) {this.drawTour(turtle, this.circle(r).map(e => V.add(e, pt)));} static drawArrow(turtle, s, d, width = 6, length = 3) {turtle.jump(s);const arrowHeadBase = V.add(s,d);turtle.goto(arrowHeadBase);turtle.goto(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, width/2])));turtle.jump(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, -width/2])));turtle.goto(arrowHeadBase);} static circlesTangents(c1_center, c1_radius, c2_center, c2_radius, internal = false) {let middle_circle = [V.scale(V.sub(c1_center, c2_center), .5)].map(hwp => [V.add(c2_center, hwp), V.len(hwp)]).pop();if(!internal && c1_radius == c2_radius) {let target = V.sub(c2_center, c1_center);let scaledTarget = V.scale(target, c1_radius/V.len(target));let partResult = [V.add(c1_center, V.trans(V.rot2d(Math.PI/2), scaledTarget)),V.add(c1_center, V.trans(V.rot2d(Math.PI/-2), scaledTarget))];return [partResult,partResult.map(pt => V.add(pt, target))]}let swap = !internal && c2_radius > c1_radius;if(swap) {let t = [[...c1_center], c1_radius];c1_center = c2_center;c1_radius = c2_radius;c2_center = t[0];c2_radius = t[1];}let internal_waypoints = intersectCircles2(c1_center, c1_radius + (internal?c2_radius:-c2_radius), ...middle_circle);if(internal_waypoints.length == 0) return [];const circlePointAtDirection2 = (circle_center, radius, direction) => V.add(circle_center, V.scale(direction, radius/V.len(direction)));const result = [[circlePointAtDirection2(c1_center, c1_radius, V.sub(internal_waypoints[0], c1_center)),circlePointAtDirection2(c1_center, c1_radius, V.sub(internal_waypoints[1], c1_center))],[circlePointAtDirection2(c2_center, c2_radius, internal? V.sub(c1_center, internal_waypoints[0]): V.sub(internal_waypoints[0], c1_center)),circlePointAtDirection2(c2_center, c2_radius, internal? V.sub(c1_center, internal_waypoints[1]): V.sub(internal_waypoints[1], c1_center))]];return swap? [[result[1][1],result[1][0]],[result[0][1],result[0][0]]]: result;} } this.PT = PathTools; class Complex { static add(a,b) { return V.add(a,b); } static sub(a,b) { return V.sub(a,b); } static scale(a,s) { return V.scale(a,s); } static mult(a,b) { return [a[0]*b[0]-a[1]*b[1],a[0]*b[1]+a[1]*b[0]]; } static sqrt(a) { return [[Math.hypot(...a)**.5, Math.atan2(...a.reverse()) / 2]].map(ra => [ra[0]*Math.cos(ra[1]), ra[0]*Math.sin(ra[1])]).pop(); } } this.C = Complex; class Numbers { static approx(a,b,p) { return Math.abs(a-b) < (p === undefined? .001: p); } static clamp(a, min, max) { return Math.min(Math.max(a, min), max); } } this.N = Numbers; class Matrix { static bayer(order) { return [...Array(1<<order)].map((_,y,a) => { const g = (k=order,x)=>k--&&4*g(k,x)|2*(x>>k)+3*(y>>k&1)&3; return a.map(g); }); } static rotate(m) { return m[0].map((e, i) => m.map(r => r[i]).reverse()); } static rotateCCW(m) { return m[0].map((e, i) => m.map(r => r[r.length-1-i])); } static add(a,b) { return a.map((e, c) => e.map((e, r) => a[c][r] + b[c][r])); } static sub(a,b) { return a.map((e, c) => e.map((e, r) => a[c][r] - b[c][r])); } static multiply(a,b) { return Array.from({length: b.length}, (e,resCol) => Array.from({length: a[0].length}, (e,resRow) => b[resCol].reduce((acc, c, bRow) => acc + a[bRow][resRow] * b[resCol][bRow], 0)));} static scale(a,s) { return a.map((e, c) => e.map((e, r) => a[c][r] * s)); } static random(c,r,fillFn = Math.random) { return Array.from({length: c}, (e,i) => Array.from({length: r}, e => fillFn(c, r))); } static identity(d) { return Array.from({length: d}, (e,c) => Array.from({length: d}, (e, r) => c==r?1:0 )); } static log(m, name, logFn = console.log) { if(name != undefined) logFn(name); if(m === undefined || (typeof m == 'object' && (m[0] === undefined || m[0][0] === undefined))) { return logFn(`Failed to log matrix:`, m); } logFn(m[0].map((e,r) => m.map((e,c) => m[c][r]).join(', ')).join('\n')); } static invert(m) { let _A = m.map(col => col.map(cell => cell));/*clone matrix*/let temp;const N = _A.length;const E = Array.from({length: N}, (e,i) => Array.from({length: _A[0].length}, (e,j) => i==j?1:0));for (let k = 0; k < N; k++) {temp = _A[k][k];for (let j = 0; j < N; j++) {_A[k][j] /= temp;E[k][j] /= temp;}for (let i = k + 1; i < N; i++) {temp = _A[i][k];for (let j = 0; j < N; j++) {_A[i][j] -= _A[k][j] * temp;E[i][j] -= E[k][j] * temp;}}}for (let k = N - 1; k > 0; k--) {for (let i = k - 1; i >= 0; i--) {temp = _A[i][k];for (let j = 0; j < N; j++) {_A[i][j] -= _A[k][j] * temp;E[i][j] -= E[k][j] * temp;}}}return E; } static determinant(m) { return m.length == 1 ?m[0][0] :m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0] :m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.determinant(m.slice(1).map(c => c.filter((_,j) => i != j))), 0)} static flip(m) { return Array.from({length: m[0].length}, (_, r) => Array.from({length: m.length}, (e, c) => m[c][r])); } static sum(m) { return m.reduce((a, c) => a + c.reduce((aa, cc) => aa + cc, 0), 0); } } this.M = Matrix; class Algorithms { static nthTriangular(n) { return ((n * n) + n) / 2; } } this.A = Algorithms; }