Mapping (a, 0) to (0, 1-a) etc.

The bounding edge of this describes sqrt(x) + sqrt(y) = 1, which is a very interesting equation.

Log in to post a comment.

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);

// Global code will be evaluated once.
const turtle = new Turtle();


const line_pairs = 20;

const incr = 100/line_pairs
// The walk function will be called until it returns false.

function walk(j) {
    const i = j + 0.5
    // we want two lines.
    // one goes from (0, -100 + 10i) to (10i, 0).
    // slope is (100 - 10i)/(10i) = 10/i - 1
    const b = -100 + incr*i
    const m = -b/(incr*i)
    turtle.penup()
    turtle.goto(-100, m*(-100) + b);
    turtle.pendown();
    turtle.goto((100 - b)/m, 100);
    // the other goes from (-10i, 0) to (0, 100 - 10i)
    // slope is 10/i - 1 again but intercept is 100 - 10i,
    const b2 = 100 - incr*i
    turtle.penup()
    turtle.goto(-100, m*(-100) + b2);
    turtle.pendown();
    turtle.goto((100 - b2)/m, 100);
    
    
    turtle.penup()

    return i < line_pairs;
}