derived from Pluecker Conoid
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);
// Global code will be evaluated once.
const turtle = new Turtle();
turtle.penup();
turtle.goto(0,0);
draw=0;
const nx=1; // min=0, max=10, step=1
const ny=1; // min=0, max=10, step=1
const nz=1; // min=0, max=10, step=1
const rotatex=50; // min=0, max=360, step=1
const rotatey=50; // min=0, max=360, step=1
const rotatez=50; // min=0, max=360, step=1
const scale=30; // min=0, max=100, step=1
x=.0
y=.0
z=.0
u=.0
v=.0
// The walk function will be called until it returns false.
function walk()
{
for(u=-3.14;u<=3.14;u=u+0.04)
{
for(v=-1.0;v<=1.0;v=v+0.1)
{
x=v*Math.cos(u)*nx*scale
y=v*Math.sin(u)*ny*scale
z=Math.sin(u)*nz*scale
// Rotation in x
xn=x
yn=y*Math.cos(rotatex/360*2*3.1415)-z*Math.sin(rotatex/360*2*3.1415)
zn=y*Math.sin(rotatex/360*2*3.1415)+z*Math.cos(rotatex/360*2*3.1415)
x=xn
y=yn
z=zn
// Rotation in y
xn=x*Math.cos(rotatey/360*2*3.1415)+z*Math.sin(rotatey/360*2*3.1415)
yn=y
zn=-x*Math.sin(rotatey/360*2*3.1415)+z*Math.cos(rotatey/360*2*3.1415)
x=xn
y=yn
z=zn
// Rotation in y
xn=x*Math.cos(rotatez/360*2*3.1415)-y*Math.sin(rotatez/360*2*3.1415)
yn=x*Math.sin(rotatez/360*2*3.1415)+y*Math.cos(rotatez/360*2*3.1415)
zn=z
// convert to isometric view, orthographic
// x' = (x - z) * cos(θ)
// y' = y + (x + z) * sin(θ)
// θ = 30° for isometric
xiso=((xn-zn)*Math.cos(3.1415/6))
yiso=(yn+(xn+zn)*Math.sin(3.1415/6))
turtle.goto(xiso,yiso);
if (draw==0) {
turtle.pendown();
draw=1;
}
}
}
return false
}