a noisy sweep around the circle
Log in to post a comment.
const [pointCount, noiseScaleInc, steps, opacity] = [ [4, 0.01, 200, -0.2], [3, 0.01, 200, -0.2], [500, 0.001, 200, -0.1], [250, 0.0005, 40, -0.8], ][0] const drawScale = 160 Canvas.setpenopacity(opacity) const turtle = new Turtle() const rngSeed = Math.random() console.log('rngSeed = ', rngSeed) function walk(i) { seed(rngSeed) const noiseScale = 1 + noiseScaleInc * i turtle.pendown() for (let j = 0; j < pointCount; j++) { const angle = j / pointCount * Math.PI * 2 const x = Math.cos(angle) * noiseScale const y = Math.sin(angle) * noiseScale turtle.goto(perlin3(x, y, 1) * drawScale, perlin3(x, y, -1) * drawScale) } turtle.penup() return i < steps } // from https://github.com/josephg/noisejs const lib = {} ;(function(lib) { function Grad(x, y, z) { this.x = x; this.y = y; this.z = z; } Grad.prototype.dot2 = function(x, y) { return this.x*x + this.y*y; }; Grad.prototype.dot3 = function(x, y, z) { return this.x*x + this.y*y + this.z*z; }; const grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0), new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1), new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)]; const p = [151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180]; // To remove the need for index wrapping, double the permutation table length const perm = new Array(512); const gradP = new Array(512); // This isn't a very good seeding function, but it works ok. It supports 2^16 // different seed values. Write something better if you need more seeds. lib.seed = function(seed) { if(seed > 0 && seed < 1) { // Scale the seed out seed *= 65536; } seed = Math.floor(seed); if(seed < 256) { seed |= seed << 8; } for(var i = 0; i < 256; i++) { var v; if (i & 1) { v = p[i] ^ (seed & 255); } else { v = p[i] ^ ((seed>>8) & 255); } perm[i] = perm[i + 256] = v; gradP[i] = gradP[i + 256] = grad3[v % 12]; } }; lib.seed(0); function fade(t) { return t*t*t*(t*(t*6-15)+10); } function lerp(a, b, t) { return (1-t)*a + t*b; } lib.perlin3 = function(x, y, z) { // Find unit grid cell containing point var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z); // Get relative xyz coordinates of point within that cell x = x - X; y = y - Y; z = z - Z; // Wrap the integer cells at 255 (smaller integer period can be introduced here) X = X & 255; Y = Y & 255; Z = Z & 255; // Calculate noise contributions from each of the eight corners var n000 = gradP[X+ perm[Y+ perm[Z ]]].dot3(x, y, z); var n001 = gradP[X+ perm[Y+ perm[Z+1]]].dot3(x, y, z-1); var n010 = gradP[X+ perm[Y+1+perm[Z ]]].dot3(x, y-1, z); var n011 = gradP[X+ perm[Y+1+perm[Z+1]]].dot3(x, y-1, z-1); var n100 = gradP[X+1+perm[Y+ perm[Z ]]].dot3(x-1, y, z); var n101 = gradP[X+1+perm[Y+ perm[Z+1]]].dot3(x-1, y, z-1); var n110 = gradP[X+1+perm[Y+1+perm[Z ]]].dot3(x-1, y-1, z); var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1); // Compute the fade curve value for x, y, z var u = fade(x); var v = fade(y); var w = fade(z); // Interpolate return lerp( lerp( lerp(n000, n100, u), lerp(n001, n101, u), w), lerp( lerp(n010, n110, u), lerp(n011, n111, u), w), v); }; })(lib) const { seed, perlin3 } = lib