This is a Manblebrot set. Which is a fractal based on the complex plane.

Log in to post a comment.

// You can find the Turtle API reference here: https://turtletoy.net/syntax const res = 400; //min=50, max=500, step=50 const max_itter = 50; //min=50, max=500, step=50 const offsetX = -.5; //min=-1, max=1, step=0.01 const offsetY = 0; //min=-1, max=1, step=0.01 const zoom = 1; //min=1, max=200, step=1 const lineSize = 1; //min=1, max=10, step=1 Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); // The walk function will be called until it returns false. function walk(i) { // I borrowed this from this post: https://turtletoy.net/turtle/7a0b879dab // This gave me the coordinates const f = Math.floor(i/res); const d = Math.ceil(i/2)*4-i*2-1; const x = (i-f*res)/(res-1)*200-100; const y = f/(res-1)*200-100; // I remap the coordinates from -100:100 to - 1:1 but this can chnage based on the offset and zoom level const nx = x/100/zoom+offsetX; const ny = y/100/zoom+offsetY; // simple mandlebrot set calculation you can find more info here: https://en.wikipedia.org/wiki/Mandelbrot_set let zx = 0; let zy = 0; let itter = 0; while(zx*zx+zy*zy < 2 && itter < max_itter) { let xTemp = (zx*zx)-(zy*zy)+nx; zy = 2*zx*zy+ny; zx = xTemp; itter++; } // calculate the size of the linesegment based on how many itteration there are on this point const size = (itter/max_itter)*lineSize; turtle.jmp(x,y); // calculate the endpoint of the line based on the size of the linesegment // and the angle of the last point of the calculation (zx, zy) let _x = zx - nx; let _y = zy - ny; let len = Math.sqrt(_x*_x+_y*_y); if(len != 0) { turtle.goto(x+(_x/len)*size, y+(_y/len)*size); } return i < res*res; }