Sheep (Ovis aries) are quadrupedal, ruminant mammals typically kept as livestock.
Log in to post a comment.
// Sheep. Created by Reinder Nijhoff 2020 // @reindernijhoff // // https://turtletoy.net/turtle/dd73eeec09 // const grid = 5; // min=1, max=20, step=1 const changeWhite = 1; // min=0, max=1, step=0.01 const changeFlip = 0.05; // min=0, max=1, step=0.01 const turtle = new Turtle(); const polygons = new Polygons(); const tra = (p, t) => [p[0]+t[0], p[1]+t[1]]; const rot = (p, a) => [p[0]*Math.cos(a)+p[1]*Math.sin(a), p[1]*Math.cos(a)-p[0]*Math.sin(a)]; const scl = (p, sx, sy) => [p[0]*sx, p[1]*(sy?sy:sx)]; const fly = p => [p[0], -p[1]]; const flx = p => [-p[0], p[1]]; const I = p => p; const ran = (a, s = .2) => a - s + 2 * s * Math.random(); const rn2 = (a, s = [.2,.2]) => [ran(a[0],s[0]), ran(a[1], s[1])]; function walk(i) { const x = i % grid; const y = (i/grid)|0; const flip = (Math.random() < changeFlip ? -1 : 1); sheep(turtle, p => tra(scl(p, 5/grid * flip, 5/grid), [(x+.5)*190/grid-95, -(y+.5)*190/grid+95])); return i < grid*grid-1; } function cloud(turtle, tr, addHatching, segments = 9, detail = .32) { const t = p => tr([p[0], .75*p[1]]); const points = [], s=Math.random(); for (let i=0; i<segments; i++) { const angle = (i+s+Math.random()*.25) * Math.PI * 2 / segments; const radius = 9+1.5*Math.random(); points[i] = scale2([Math.cos(angle), Math.sin(angle)], radius); } const poly = polygons.create(); for (let i=0; i<segments; i++) { const sp = points[i], ep = points[(i+1) % segments]; const sc = scale2(add2(scale2(sp, 3), scale2(ep, 1)), detail); const ec = scale2(add2(scale2(sp, 1), scale2(ep, 3)), detail); addBezier(poly, t(sp), t(sc), t(ec), t(ep), true, true); } if (addHatching) poly.addHatching(-Math.PI/4, .5); polygons.draw(turtle, poly); } function arc(turtle, tr, addHatching) { const p0 = rn2([3,3]), p1 = rn2([-9, 1]), p2 = rn2([1,-5]); const p0c = add2(p0, rn2([-2,3])), p1c0 = add2(p1, rn2([0,4])); const p2c = add2(p2, rn2([-2,0])), p1c1 = add2(p1, rn2([0,-4.5])); const poly = polygons.create(); addBezier(poly, tr(p0), tr(p0c), tr(p1c0), tr(p1), true, true); addBezier(poly, tr(p1), tr(p1c1), tr(p2c), tr(p2), true, true); addPoints(poly, [tr([6,-2]), tr([6,0])], true, false); if (addHatching) poly.addHatching(-Math.PI/4, .5); polygons.draw(turtle, poly); } function head(turtle, tr, addHatching) { const angleHead = ran(0.4, .35), angleEar = ran(3.5, .3); const offsetHead = rn2([-11, -1.5]); const t = p => tr(tra(scl(rot(p, angleHead), .75), offsetHead)); // eye const poly = polygons.create(); addArc(poly, t([0,-2]), len2(sub2(t([0,-2]),t([0,-2.25]))), 0, Math.PI*2, 10, true, true); polygons.draw(turtle, poly); // ear arc(turtle, p => t(tra(scl(rot(fly(p), angleEar), .35), [6, -2])), addHatching); // head arc(turtle, t, addHatching); // hair cloud(turtle, p => t(tra(scl(rot(p, -.4), .35), [4, -4])), addHatching, 6, 2/5); } function leg(turtle, tr, addHatching) { const p0 = [-.4,0], p1 = [-.5,8], p2 = [1,8], p3 = [0,0]; const puc = [-1,3], pdc = [-1,-1], p1c = [.5,.5], p2c = [-.5,.5]; const poly = polygons.create(); addBezier(poly, tr(p0), tr(add2(p0,puc)), tr(add2(p1,pdc)), tr(p1), true, true); addBezier(poly, tr(p1), tr(add2(p1,p1c)), tr(add2(p2,p2c)), tr(p2), true, true); addBezier(poly, tr(p2), tr(add2(p2,pdc)), tr(add2(p3,puc)), tr(p3), true, true); if (addHatching) poly.addHatching(-Math.PI/4, .5); polygons.draw(turtle, poly); } function sheep(turtle, tr) { let t = tr; const addHatching = Math.random() > changeWhite; head(turtle, t, addHatching); cloud(turtle, t, addHatching); const f = -.2, b = -0.1, a = .15+.3*Math.random(); leg(turtle, p => t(tra(rot(p,f+a),[-4,3.25])), !addHatching); leg(turtle, p => t(tra(rot(p,f-a),[-4,3.6])), !addHatching); leg(turtle, p => t(tra(rot(p,b-a),[ 7,3.25])), !addHatching); leg(turtle, p => t(tra(rot(p,b+a),[ 7,3.25])), !addHatching); } function bezier(p0, p1, p2, p3, t) { const k = 1 - t; return [ k*k*k*p0[0] + 3*k*k*t*p1[0] + 3*k*t*t*p2[0] + t*t*t*p3[0], k*k*k*p0[1] + 3*k*k*t*p1[1] + 3*k*t*t*p2[1] + t*t*t*p3[1] ]; } function addPoints(poly, points, asEdge, asLine) { if (asEdge) poly.addPoints(...points); if (asLine) { for (let i=0, steps=10; i<steps; i++) { poly.addSegments(points[i], points[i+1]); } } } function addBezier(poly, sp, sc, ec, ep, asEdge, asLine) { const points = []; for (let i=0, steps=10; i<=steps; i++) { points.push(bezier(sp, sc, ec, ep, i/steps)); } addPoints(poly, points, asEdge, asLine); } function addArc(poly, center, radius, sa, ea, steps, asEdge, asLine) { const points = []; for (let i=0; i<=steps; i++) { const a = sa + i*(ea-sa)/steps; points.push(add2(center, [radius*Math.cos(a), radius*Math.sin(a)])); } addPoints(poly, points, asEdge, asLine); } function scale2(a,b) { return [a[0]*b,a[1]*b]; } function add2(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function sub2(a,b) { return [a[0]-b[0],a[1]-b[1]]; } function len2(a) { return Math.sqrt(a[0]**2 + a[1]**2); } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }