Sheep

Sheep (Ovis aries) are quadrupedal, ruminant mammals typically kept as livestock.

Log in to post a comment.

// Sheep. Created by Reinder Nijhoff 2020
// @reindernijhoff
//
// https://turtletoy.net/turtle/dd73eeec09
//

const grid = 5; // min=1, max=20, step=1
const changeWhite = 1; // min=0, max=1, step=0.01
const changeFlip = 0.05; // min=0, max=1, step=0.01

const turtle = new Turtle();
const polygons = new Polygons();

const tra = (p, t) => [p[0]+t[0], p[1]+t[1]];
const rot = (p, a) => [p[0]*Math.cos(a)+p[1]*Math.sin(a), p[1]*Math.cos(a)-p[0]*Math.sin(a)];
const scl = (p, sx, sy) => [p[0]*sx, p[1]*(sy?sy:sx)];
const fly = p => [p[0], -p[1]];
const flx = p => [-p[0], p[1]];
const I   = p => p;

const ran = (a, s = .2) => a - s + 2 * s * Math.random();
const rn2 = (a, s = [.2,.2]) => [ran(a[0],s[0]), ran(a[1], s[1])];

function walk(i) {
    const x = i % grid;
    const y = (i/grid)|0;
    const flip = (Math.random() < changeFlip ? -1 : 1);
    sheep(turtle, p => tra(scl(p, 5/grid * flip, 5/grid), [(x+.5)*190/grid-95, -(y+.5)*190/grid+95]));
    return i < grid*grid-1;
}

function cloud(turtle, tr, addHatching, segments = 9, detail = .32) {
    const t = p => tr([p[0], .75*p[1]]);
    const points = [], s=Math.random();
    for (let i=0; i<segments; i++) {
        const angle = (i+s+Math.random()*.25) * Math.PI * 2 / segments;
        const radius = 9+1.5*Math.random();
        points[i] = scale2([Math.cos(angle), Math.sin(angle)], radius);
    }
    const poly = polygons.create();
    for (let i=0; i<segments; i++) {
        const sp = points[i], ep = points[(i+1) % segments];
        const sc = scale2(add2(scale2(sp, 3), scale2(ep, 1)), detail);
        const ec = scale2(add2(scale2(sp, 1), scale2(ep, 3)), detail);
        addBezier(poly, t(sp), t(sc), t(ec), t(ep), true, true);
    }
    if (addHatching) poly.addHatching(-Math.PI/4, .5);
    polygons.draw(turtle, poly);
}

function arc(turtle, tr, addHatching) {
    const p0 = rn2([3,3]), p1 = rn2([-9, 1]), p2 = rn2([1,-5]);
    const p0c = add2(p0, rn2([-2,3])), p1c0 = add2(p1, rn2([0,4]));
    const p2c = add2(p2, rn2([-2,0])), p1c1 = add2(p1, rn2([0,-4.5]));
    const poly = polygons.create();
    addBezier(poly, tr(p0), tr(p0c), tr(p1c0), tr(p1), true, true);
    addBezier(poly, tr(p1), tr(p1c1), tr(p2c), tr(p2), true, true);
    addPoints(poly, [tr([6,-2]), tr([6,0])], true, false);

    if (addHatching) poly.addHatching(-Math.PI/4, .5);
    polygons.draw(turtle, poly);
}

function head(turtle, tr, addHatching) {
    const angleHead = ran(0.4, .35), angleEar = ran(3.5, .3);
    const offsetHead = rn2([-11, -1.5]);
    const t = p => tr(tra(scl(rot(p, angleHead), .75), offsetHead));
    // eye
    const poly = polygons.create();
    addArc(poly, t([0,-2]), len2(sub2(t([0,-2]),t([0,-2.25]))), 0, Math.PI*2, 10, true, true);
    polygons.draw(turtle, poly);
    // ear
    arc(turtle, p => t(tra(scl(rot(fly(p), angleEar), .35), [6, -2])), addHatching);
    // head
    arc(turtle, t, addHatching);
    // hair
    cloud(turtle, p => t(tra(scl(rot(p, -.4), .35), [4, -4])), addHatching, 6, 2/5);
}

function leg(turtle, tr, addHatching) {
    const p0 = [-.4,0], p1 = [-.5,8], p2 = [1,8], p3 = [0,0];
    const puc = [-1,3], pdc = [-1,-1], p1c = [.5,.5], p2c = [-.5,.5];

    const poly = polygons.create();
    addBezier(poly, tr(p0), tr(add2(p0,puc)), tr(add2(p1,pdc)), tr(p1), true, true);
    addBezier(poly, tr(p1), tr(add2(p1,p1c)), tr(add2(p2,p2c)), tr(p2), true, true);
    addBezier(poly, tr(p2), tr(add2(p2,pdc)), tr(add2(p3,puc)), tr(p3), true, true);
    
    if (addHatching) poly.addHatching(-Math.PI/4, .5);
    polygons.draw(turtle, poly);
}

function sheep(turtle, tr) {
    let t = tr;
    const addHatching = Math.random() > changeWhite;

    head(turtle, t, addHatching);
    cloud(turtle, t, addHatching);
    
    const f = -.2, b = -0.1, a = .15+.3*Math.random();
    leg(turtle, p => t(tra(rot(p,f+a),[-4,3.25])), !addHatching);
    leg(turtle, p => t(tra(rot(p,f-a),[-4,3.6])), !addHatching);
    leg(turtle, p => t(tra(rot(p,b-a),[ 7,3.25])), !addHatching);
    leg(turtle, p => t(tra(rot(p,b+a),[ 7,3.25])), !addHatching);
}

function bezier(p0, p1, p2, p3, t) {
    const k = 1 - t;
    return [    k*k*k*p0[0] + 3*k*k*t*p1[0] + 3*k*t*t*p2[0] + t*t*t*p3[0],
                k*k*k*p0[1] + 3*k*k*t*p1[1] + 3*k*t*t*p2[1] + t*t*t*p3[1] ];
}

function addPoints(poly, points, asEdge, asLine) {
    if (asEdge) poly.addPoints(...points);
    if (asLine) {
        for (let i=0, steps=10; i<steps; i++) {
            poly.addSegments(points[i], points[i+1]);
        }
    }
}

function addBezier(poly, sp, sc, ec, ep, asEdge, asLine) {
    const points = [];
    for (let i=0, steps=10; i<=steps; i++) {
        points.push(bezier(sp, sc, ec, ep, i/steps));
    }
    addPoints(poly, points, asEdge, asLine);
}

function addArc(poly, center, radius, sa, ea, steps, asEdge, asLine) {
    const points = [];
    for (let i=0; i<=steps; i++) {
        const a = sa + i*(ea-sa)/steps;
        points.push(add2(center, [radius*Math.cos(a), radius*Math.sin(a)]));
    }
    addPoints(poly, points, asEdge, asLine);    
}

function scale2(a,b) { return [a[0]*b,a[1]*b]; }
function add2(a,b) { return [a[0]+b[0],a[1]+b[1]]; }
function sub2(a,b) { return [a[0]-b[0],a[1]-b[1]]; }
function len2(a) { return Math.sqrt(a[0]**2 + a[1]**2); }

////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////

function Polygons() {
	const polygonList = [];
	const Polygon = class {
		constructor() {
			this.cp = [];       // clip path: array of [x,y] pairs
			this.dp = [];       // 2d lines [x0,y0],[x1,y1] to draw
			this.aabb = [];     // AABB bounding box
		}
		addPoints(...points) {
		    // add point to clip path and update bounding box
		    let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5;
			(this.cp = [...this.cp, ...points]).forEach( p => {
				xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]);
				ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]);
			});
		    this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2];
		}
		addSegments(...points) {
		    // add segments (each a pair of points)
		    points.forEach(p => this.dp.push(p));
		}
		addOutline() {
			for (let i = 0, l = this.cp.length; i < l; i++) {
				this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
			}
		}
		draw(t) {
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				t.jump(this.dp[i]), t.goto(this.dp[i + 1]);
			}
		}
		addHatching(a, d) {
			const tp = new Polygon();
			tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
			const dx = Math.sin(a) * d,   dy = Math.cos(a) * d;
			const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
			for (let i = 0.5; i < 150 / d; i++) {
				tp.dp.push([dx * i + cy,   dy * i - cx], [dx * i - cy,   dy * i + cx]);
				tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
			}
			tp.boolean(this, false);
			this.dp = [...this.dp, ...tp.dp];
		}
		inside(p) {
			let int = 0; // find number of i ntersection points from p to far away
			for (let i = 0, l = this.cp.length; i < l; i++) {
				if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) {
					int++;
				}
			}
			return int & 1; // if even your outside
		}
		boolean(p, diff = true) {
		    // bouding box optimization by ge1doot.
		    if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 &&
				Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0;
				
			// polygon diff algorithm (narrow phase)
			const ndp = [];
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const ls0 = this.dp[i];
				const ls1 = this.dp[i + 1];
				// find all intersections with clip path
				const int = [];
				for (let j = 0, cl = p.cp.length; j < cl; j++) {
					const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]);
					if (pint !== false) {
						int.push(pint);
					}
				}
				if (int.length === 0) {
					// 0 intersections, inside or outside?
					if (diff === !p.inside(ls0)) {
						ndp.push(ls0, ls1);
					}
				} else {
					int.push(ls0, ls1);
					// order intersection points on line ls.p1 to ls.p2
					const cmpx = ls1[0] - ls0[0];
					const cmpy = ls1[1] - ls0[1];
					int.sort( (a,b) =>  (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - 
					                    (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy);
					 
					for (let j = 0; j < int.length - 1; j++) {
						if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) {
							if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) {
								ndp.push(int[j], int[j+1]);
							}
						}
					}
				}
			}
			return (this.dp = ndp).length > 0;
		}
		//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
		segment_intersect(l1p1, l1p2, l2p1, l2p2) {
			const d   = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
			if (d === 0) return false;
			const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
			const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
			const ua = n_a / d;
			const ub = n_b / d;
			if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
				return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])];
			}
			return false;
		}
	};
	return {
		list: () => polygonList,
		create: () => new Polygon(),
		draw: (turtle, p, addToVisList=true) => {
			for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++);
			p.draw(turtle);
			if (addToVisList) polygonList.push(p);
		}
	};
}