// Hexagon Truchet. Created by Reinder Nijhoff 2019 - @reindernijhoff // // https://turtletoy.net/turtle/e5df5b10e0 // const turtle = new Turtle(); const scale = 5; const lineWidth = .4; // min=0.1, max=0.4, step=0.01 const showHexagons = false; const h0 = Math.sqrt(3)/2; const h1 = 1/2; function drawHexagon(t, x, y) { if (Math.abs(scale*x) > 100+scale || Math.abs(scale*y) > 100+scale) return; // early discard const a = ((Math.random()*3)|0)*Math.PI/3; // random angle const poly = new Polygons(); // 2 transform functions: translate-scale (for background hatching), and rotate-translate-scale const ts = p => [scale*(p[0]+x),scale*(p[1]+y)]; const rts = p => ts([Math.cos(a)*p[0]+Math.sin(a)*p[1], Math.cos(a)*p[1]-Math.sin(a)*p[0]]); // vec2 helper functions const add = (a, b) => [a[0]+b[0], a[1]+b[1]]; const sub = (a, b) => [a[0]-b[0], a[1]-b[1]]; const scl = (a, b) => [a[0]*b, a[1]*b]; // 2 methods to create lines in a tile const line = (s, e, d) => { // line from s to e and width d const p = poly.create(); p.addPoints(rts(add(s,d)), rts(add(e,d)), rts(sub(e,d)), rts(sub(s,d))); p.addSegments(rts(add(s,d)), rts(add(e,d)), rts(sub(e,d)), rts(sub(s,d))); return p; } const circle = (c, r, s, e) => { // circle around c, from angle s to e with radius r const p = poly.create(), c0 =[], c1 = [], f=10; for (let i=0; i<=f; i++) { c0.push(rts(add(c, [Math.cos(s+(e-s)*i/f)*(r+lineWidth), Math.sin(s+(e-s)*i/f)*(r+lineWidth)]))); c1.push(rts(add(c, [Math.cos(e-(e-s)*i/f)*(r-lineWidth), Math.sin(e-(e-s)*i/f)*(r-lineWidth)]))); } p.addPoints(...c0,...c1); for (let i=0; i<f; i++) p.addSegments(c0[i], c0[i+1]); for (let i=0; i<f; i++) p.addSegments(c1[i], c1[i+1]); return p; } // six corners of hexagon const c = []; for (let i=0; i<6; i++) { c.push([Math.cos(i*Math.PI/3), Math.sin(i*Math.PI/3)]); } // generate lines in tile const l = [], tileType = (Math.random()*5)|0; // 5 different tile types switch (tileType) { case 0: l.push(line([0,h0], [0,-h0], [lineWidth, 0])); // 3 straight lines l.push(line([1-h1/2,h0/2], [-1+h1/2,-h0/2], scl([Math.cos(Math.PI/3), -Math.sin(Math.PI/3)], lineWidth))); l.push(line([1-h1/2,-h0/2], [-1+h1/2,h0/2], scl([Math.cos(-Math.PI/3), -Math.sin(-Math.PI/3)], lineWidth))); break; case 1: l.push(line([0,h0], [0,-h0], [lineWidth, 0])); // straight line + 2 arcs #1 l.push(circle(c[0], h1, Math.PI-Math.PI/3, Math.PI+Math.PI/3)); l.push(circle(c[3], h1, -Math.PI/3, +Math.PI/3)); break; case 2: l.push(line([0,h0], [0,-h0], [lineWidth, 0])); // straight line + 2 arcs #2 l.push(circle([0,2*h0], 1+h1, -Math.PI/2-Math.PI/6, -Math.PI/2+Math.PI/6)); l.push(circle([0,-2*h0], 1+h1, Math.PI/2-Math.PI/6, Math.PI/2+Math.PI/6)); break; case 3: l.push(circle(c[0], h1, Math.PI-Math.PI/3, Math.PI+Math.PI/3)); // 3 arcs #1 l.push(circle(c[2], h1, -2*Math.PI/3, 0)); l.push(circle(c[4], h1, 0, 2*Math.PI/3)); break; default: l.push(circle([0,2*h0], 1+h1, -Math.PI/2-Math.PI/6, -Math.PI/2+Math.PI/6)); // 3 arcs #2 l.push(circle([-1-h1, h0], 1+h1, 0, -Math.PI/3)); l.push(circle(c[5], h1, Math.PI/3, Math.PI)); break; } // shuffle lines and draw l.sort((a,b) => Math.random()-.5); l.map(p => poly.draw(t, p)); // background const p0 = poly.create(); p0.addPoints(...c.map(p => ts(p))); if (showHexagons) p0.addOutline(); if (lineWidth < 0.35) p0.addHatching(Math.PI/4, 1); poly.draw(t, p0); } function walk(i) { const s = (100/scale|0)+10; const y = Math.floor(i/(s*2))-s; const x = (i % (s*2)) - s; drawHexagon(turtle, x*3 + ((y % 2 == 0)?1.5:0), y*h0); return i < s*s*4; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }