This turtle is a combination of "Cubic space division" by Escher and the Droste spiral of "Print Gallery" (also by Escher).
Note that I divide by e^(0.05*z) vs the normal divide by z to project the vertices to the screen. This way I make sure the projected grid is a Droste image.
#Droste #polygons #3D #Escher
Log in to post a comment.
// Cubic space division #3. Created by Reinder Nijhoff 2021 // @reindernijhoff // // https://turtletoy.net/turtle/e7a276c605 // const Perspective = 0; // min=0, max=2, step=1 (Droste perspective and Escher spiral, Droste perspective, Real perspective) let viewProjectionMatrix; const lw = .25; const ll = 5; const lz = 5; const dim = 9; const dimz = 21; let polys, turtle; const ls = Math.log(15.642631884188175); const sr = 4 * (Math.PI**2) / ((ls**2) + 4 * (Math.PI**2)); const si = 2 * Math.PI * ls / ((ls**2) + 4 * (Math.PI**2)); let zoom = 0; function EscherDroste(p) { // http://www.ams.org/notices/200304/fea-escher.pdf // h(w) = w^((2πi + log scale)/(2πi)) const pr = Math.log(Math.hypot(p[0]/100, p[1]/100)); let pi = Math.atan2(p[0], p[1]) + .5; //+(0.4/256.)*deformationScale; let l = Math.exp(pr * sr - pi * si); const a = pr * si + pi * sr; // barrel distortion l = Math.pow(l, 0.88) * 100; return [l * Math.cos( a ), l * Math.sin( a )]; } function walk(i, t) { zoom = t; if (i == 0) { turtle = new Tortoise(); if (Perspective == 0) { turtle.addTransform(EscherDroste); } setupCamera(); polys = new Polygons(); } const d = dim; let z = 23 -((i/d)|0) * (2*lz+1); let x, y = 0; x = -((i%d)) * (2*ll+1); drawCube(turtle, x,y+ll+lw*2,z, lw,ll-lw*2,lw ,2, true); x = ((i%d)+1) * (2*ll+1); drawCube(turtle, x,y+ll+lw*2,z, lw,ll-lw*2,lw ,0, true); x = 0; y = -((i%d)) * (2*ll+1); drawCube(turtle, x+ll+lw*2,y,z, ll-lw*2,lw,lw ,1, true); y = ((i%d)+1) * (2*ll+1); drawCube(turtle, x+ll+lw*2,y,z, ll-lw*2,lw,lw ,3, true); for (let j=0; j<d; j++) { z = 23 -(((i/d)|0) - 1) * (2*lz+1); x = -((i%d)) * (2*ll+1); y = ((j+1)) * (2*ll+1); drawCube(turtle, x,y,z, 1,1,1 ,3); drawCube(turtle, x-ll,y,z, ll,lw,lw ,3, true); drawCube(turtle, x,y+ll,z, lw,ll,lw ,2, true); drawCube(turtle, x,y,z-lz, lw,lw,lz ,3, false); x = -(i%d) * (2*ll+1); y = -(j) * (2*ll+1); drawCube(turtle, x,y,z, 1,1,1 ,2); drawCube(turtle, x-ll,y,z, ll,lw,lw ,1, true); drawCube(turtle, x,y-ll,z, lw,ll,lw ,2, true); drawCube(turtle, x,y,z-lz, lw,lw,lz ,2, false); x = ((i%d) + 1) * (2*ll+1); y = -(j) * (2*ll+1); drawCube(turtle, x,y,z, 1,1,1 ,1); drawCube(turtle, x+ll,y,z, ll,lw,lw ,1, true); drawCube(turtle, x,y-ll,z, lw,ll,lw ,0, true); drawCube(turtle, x,y,z-lz, lw,lw,lz ,1, false); x = ((i%d) + 1) * (2*ll+1); y = ((j) + 1) * (2*ll+1); drawCube(turtle, x,y,z, 1,1,1 ,0); drawCube(turtle, x+ll,y,z, ll,lw,lw ,3, true); drawCube(turtle, x,y+ll,z, lw,ll,lw ,0, true); drawCube(turtle, x,y,z-lz, lw,lw,lz ,0, false); } return i < dim*dimz; } function drawCube(turtle, x, y, z, w, h, d, mode = 0, hideCap = false) { if (40 - (dimz + mode - 3) * (2*lz+1) > z - h) return; let vl = [ [x-w,y-h,z+d,1], [x+w,y-h,z+d,1], [x+w,y+h,z+d,1], [x-w,y+h,z+d,1], [x-w,y+h,z-d,1], [x+w,y+h,z-d,1], [x+w,y-h,z-d,1], [x-w,y-h,z-d,1], ]; let il; switch(mode) { case 0: il = [0,1,2,3, 3,4,7,0, 0,7,6,1]; break; case 1: il = [0,1,2,3, 5,2,3,4, 3,4,7,0]; break; case 2: il = [0,1,2,3, 1,2,5,6, 5,2,3,4]; break; case 3: il = [0,1,2,3, 0,7,6,1, 1,2,5,6]; break; } const e = hideCap ? 2 : 3; for (let i=0; i<e; i++) { let vis = true; const cp = []; for (let j=0; j<4; j++) { const v = transform4(vl[il[j+i*4]], viewProjectionMatrix); const d = Perspective == 2 ? 100/v[3] : Math.exp(-0.05*v[3]) * 25; cp.push([v[0]*d , -v[1]*d]); if (v[3] < (Perspective == 2 ? 3 : -5)) { vis = false; break; } } if (vis) { vis = true; for (let j=0; j<cp.length; j++) { if (Math.abs(cp[j][0]) > 800 || Math.abs(cp[j][1]) > 800) { vis = false; break; } } if (vis) { const p = polys.create(); p.addPoints(...cp); p.addOutline(i); polys.draw(turtle, p); } } } } function setupCamera() { viewMatrix = lookAt4m([ll+.5,ll+.5,20 - zoom*11], [ll+.5,ll+.5,0], [0.1,1,0]); // viewMatrix = lookAt4m([ll,ll,31 - zoom*11], [ll,ll,0], [0,1,0]); projectionMatrix = perspective4m(.5, 1, 0); viewProjectionMatrix = multiply4m(projectionMatrix, viewMatrix); } //////////////////////////////////////////////////////////////// // Tortoise utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/102cbd7c4d //////////////////////////////////////////////////////////////// function Tortoise(x, y) { class Tortoise extends Turtle { constructor(x, y) { super(x, y); this.ps = Array.isArray(x) ? [...x] : [x || 0, y || 0]; this.transforms = []; } addTransform(t) { this.transforms.push(t); this.jump(this.ps); return this; } applyTransforms(p) { if (!this.transforms) return p; let pt = [...p]; this.transforms.map(t => { pt = t(pt); }); return pt; } goto(x, y, d = 0) { const p = Array.isArray(x) ? [...x] : [x, y]; const pt = this.applyTransforms(p); if (d > 10) { super.jump(p); } if (this.isdown() && (this.pt[0]-pt[0])**2 + (this.pt[1]-pt[1])**2 > 12) { this.goto((this.ps[0]+p[0])/2, (this.ps[1]+p[1])/2, d+1); this.goto(p[0], p[1], d+1); } else { super.goto(pt); this.ps = p; this.pt = pt; } } position() { return this.ps; } } return new Tortoise(x,y); } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const Node = class { constructor(aabb, depth, maxDepth) { this.aabb = aabb; this.depth = depth; this.polys = []; this.children = []; if (depth < maxDepth) { const half = aabb[2]/2; this.children.push(new Node([aabb[0]-half, aabb[1]-half, half, half], depth+1, maxDepth)); this.children.push(new Node([aabb[0]+half, aabb[1]-half, half, half], depth+1, maxDepth)); this.children.push(new Node([aabb[0]+half, aabb[1]+half, half, half], depth+1, maxDepth)); this.children.push(new Node([aabb[0]-half, aabb[1]+half, half, half], depth+1, maxDepth)); } } inside(aabb) { return (Math.abs(this.aabb[0] - aabb[0]) < this.aabb[2] - aabb[2] && Math.abs(this.aabb[1] - aabb[1]) < this.aabb[3] - aabb[3]); } cover(aabb) { return !(Math.abs(this.aabb[0] - aabb[0]) - (aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - aabb[1]) - (aabb[3] + this.aabb[3]) >= 0); } add(p) { for (let i=0; i<this.children.length; i++) { if (this.children[i].inside(p.aabb)) { this.children[i].add(p); return; } } this.polys.push(p); } boolean(p) { for (let j = 0; j < this.polys.length; j++) { if (!p.boolean(this.polys[j])) { return false; } } for (let i=0; i<this.children.length; i++) { if (this.children[i].cover(p.aabb)) { if (!this.children[i].boolean(p)) { return false; } } } return true; } } const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; const polygonList = new Node([0,0,200,200], 0, 4); return { list: polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { const vis = polygonList.boolean(p); if (vis) { p.draw(turtle); if (addToVisList) polygonList.add(p); } } }; } // vec3 functions const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b]; const len3=(a)=>Math.sqrt(dot3(a,a)); const normalize3=(a)=>scale3(a,1/len3(a)); const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]]; const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]]; const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; const cross3=(a,b)=>[a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]] // vec4 functions const transform4=(a,b)=>{ const d=new Float32Array(4); for(let c=0;4>c;c++)d[c]=b[c]*a[0]+b[c+4]*a[1]+b[c+8]*a[2]+b[c+12]*a[3]; return d; } // mat4 functions const lookAt4m=(a,b,d)=>{ // pos, lookAt, up const c=new Float32Array(16); b=normalize3(sub3(a,b)); d=normalize3(cross3(d,b)); const e=normalize3(cross3(b,d)); c[0]=d[0];c[1]=e[0];c[2]=b[0];c[3]=0; c[4]=d[1];c[5]=e[1];c[6]=b[1];c[7]=0; c[8]=d[2];c[9]=e[2];c[10]=b[2];c[11]=0; c[12]=-(d[0]*a[0]+d[1]*a[1]+d[2]*a[2]); c[13]=-(e[0]*a[0]+e[1]*a[1]+e[2]*a[2]); c[14]=-(b[0]*a[0]+b[1]*a[1]+b[2]*a[2]); c[15]=1; return c; } const multiply4m=(a,b)=>{ const d=new Float32Array(16); for(let c=0;16>c;c+=4) for(let e=0;4>e;e++) d[c+e]=b[c+0]*a[0+e]+b[c+1]*a[4+e]+b[c+2]*a[8+e]+b[c+3]*a[12+e]; return d; } const perspective4m=(a,b,d)=>{ // fovy, aspect. near const c=(new Float32Array(16)).fill(0,0); c[5]=1/Math.tan(a/2); c[0]=c[5]/b; c[10]=c[11]=-1; c[14]=-2*d; return c; }