Plot your own stopped clock with an accuracy of +/- 6 hrs.
Reload or adjust the sliders for more shapes.
Log in to post a comment.
// LL 2021 const hours = -1; // min=-1 max=11 step=1 const minutes = -1; // min=-1 max=59 step=1 const seconds = -1; // min=-1 max=59 step=1 const draw_seconds = 2; // min=0 max=2 step=1 (Yes, No, Maybe) const shape = 0; // min=0 max=8 step=1 const animation = 0; // min=0 max=1 step=0.01 const turtle = new Turtle(); var polygons = null; var animated_seconds = seconds; const scale = 90; var case_sides = [ 3, 4, 4, 5, 6, 9, 12, 100 ]; var tick_scale = [ 0.85, 0.98, 0.98, 1, 1, 1, 1, 1 ]; var hand_scale = [ 0.5, 0.7, 0.7, 0.8, 0.85, 0.95, 1, 1 ]; const shape_to_draw = (shape > 0) ? (shape-1) : Math.floor(Math.random() * case_sides.length); const hours_to_draw = (hours >= 0) ? hours : Math.floor(Math.random() * 12); const minutes_to_draw = (minutes >= 0) ? minutes : Math.floor(Math.random() * 60); const seconds_to_draw = (seconds >= 0) ? seconds : Math.floor(Math.random() * 60); Canvas.setpenopacity(.75); function getCirclePoints(radius, steps) { const start_angle = -Math.PI / ((shape_to_draw != 1) ? 2 : 4); return Array.from( {length: steps}, (_, id) => ( [ Math.cos(id / steps * Math.PI*2 + start_angle) * radius, Math.sin(id / steps * Math.PI*2 + start_angle) * radius ] )); } function getLength(x, y) { return Math.sqrt(x*x + y*y); } function getTickAngle(t) { return t / 60 * Math.PI * 2 - Math.PI / 2; } function getTickScaling(t) { const steps = 60 / case_sides[shape_to_draw]; const toffset = (shape_to_draw != 1) ? 0 : (60 / 2 / case_sides[shape_to_draw]); const t0 = Math.floor(((t+toffset)) / steps) * steps - toffset; const t1 = t0 + steps; const dt = (t - t0) / steps; const x0 = Math.cos(getTickAngle(t0)); const y0 = Math.sin(getTickAngle(t0)); const x1 = Math.cos(getTickAngle(t1)); const y1 = Math.sin(getTickAngle(t1)); const xt = x0 + (x1 - x0) * dt; const yt = y0 + (y1 - y0) * dt; return getLength(xt, yt); } function getTickPoints(t) { const radius_scale = getTickScaling(t); const radius_out = 0.85 * tick_scale[shape_to_draw] * scale * radius_scale; const radius_in1 = 0.80 * tick_scale[shape_to_draw] * scale * radius_scale; const radius_in2 = 0.75 * tick_scale[shape_to_draw] * scale * radius_scale; const angle = getTickAngle(t); const radius_in = ((t % 5) == 0) ? radius_in2 : radius_in1; var points = []; const angle_offset = 0.01; points.push( [ Math.cos(angle + angle_offset) * radius_in, Math.sin(angle + angle_offset) * radius_in ] ); points.push( [ Math.cos(angle + angle_offset) * radius_out, Math.sin(angle + angle_offset) * radius_out ] ); points.push( [ Math.cos(angle - angle_offset) * radius_out, Math.sin(angle - angle_offset) * radius_out ] ); points.push( [ Math.cos(angle - angle_offset) * radius_in, Math.sin(angle - angle_offset) * radius_in ] ); return points; } function drawTicks() { for (var t=0; t<60; t++) { var points = getTickPoints(t); const p1 = polygons.create(); p1.addPoints(...points); p1.addOutline(); p1.addHatching(t / 60 * Math.PI * 2, .6); polygons.draw(turtle, p1, true); } } function drawCircle(radius, steps, shadow, hatching=false) { const points = getCirclePoints(radius * scale, steps); const p1 = polygons.create(); p1.addPoints(...points); p1.addOutline(); if (hatching) p1.addHatching(Math.PI/4, 1); polygons.draw(turtle, p1, true); if (shadow !== undefined) { const p2 = polygons.create(); p2.addPoints(...points.map(p => [p[0]+shadow[0], p[1]+shadow[1]])); p2.addHatching(-Math.PI/4, .5); polygons.draw(turtle, p2, false); } } function drawHand(value, thickness, length, shadow, hatching=false) { const start_angle = -Math.PI/2 + value * Math.PI*2; const points = Array.from( {length: 4}, (_, id) => { var radius = thickness; if (id==0) radius = length * hand_scale[shape_to_draw]; if (id==2) radius *= 3; radius *= scale; return [ Math.cos(start_angle + id / 4 * Math.PI*2) * radius, Math.sin(start_angle + id / 4 * Math.PI*2) * radius ]; }); const p1 = polygons.create(); p1.addPoints(...points); if (hatching) p1.addHatching(Math.PI/4, 1); p1.addOutline(); polygons.draw(turtle, p1, true); if (shadow !== undefined) { const p2 = polygons.create(); p2.addPoints(...points.map(p => [p[0]+shadow[0], p[1]+shadow[1]])); p2.addHatching(-Math.PI/4, .5); polygons.draw(turtle, p2, false); } } function drawCase() { drawCircle(0.9, case_sides[shape_to_draw], undefined, false); drawCircle(0.98, case_sides[shape_to_draw], [2, 3], true); } function drawCenter() { drawCircle(0.05, 20, [0.5, 0.5], true); } function drawHourHand() { const hour_value = hours_to_draw / 12 + minutes_to_draw / 60 / 12 + animated_seconds / 60 / 60 / 12; drawHand(hour_value, 0.045, 0.5, [1, 1]); } function drawMinuteHand() { const minute_value = minutes_to_draw / 60 + animated_seconds / 60 / 60; drawHand(minute_value, 0.045, 0.84, [1, 1]); } function drawSecondHand() { if (draw_seconds == 1) return; if (draw_seconds == 2 && Math.random() < 0.5) return; const second_value = animated_seconds / 60; drawHand(second_value, 0.025, 0.84, [1, 1], true); } function walk(i, t) { animated_seconds = seconds_to_draw + 12 * 60 * 60 * (t+animation); if (i ==0) polygons = new Polygons(); var index = 0; if (false) {} else if (i == index++) drawCenter(); else if (i == index++) drawSecondHand(); else if (i == index++) drawMinuteHand(); else if (i == index++) drawHourHand(); else if (i == index++) drawTicks(); else if (i == index++) drawCase(); else return false; return true; } // Adapted from: // Transforms. Created by Reinder Nijhoff 2019 - @reindernijhoff // The MIT License // https://turtletoy.net/turtle/a5befa1f8d // //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }