Clockwork-like

For automated patent-filing

Log in to post a comment.

Canvas.setpenopacity(.25);

const polygons = Polygons();
const turtle = new Turtle();

let numGearSets = 10
let teethExtrude = 4
let teethPerCircumference = 0.15
let axisRadius = 4

let gears = []

function init() {
    let prevPos = [0, 0]

    for (let i = 0; i < numGearSets; i++) {
        let numTeeth = 20 + Math.floor(20 * Math.random());
        let hatchAngle = 45 + Math.random() * 20
        let hatchAmount = 0.25 * (1 + (i % 2 == 0 ? 1 : 4) * i/numGearSets)
        
        let pos = [0, 0]
        if (i > 0) {
            let direction = normalize([Math.random() * 2 - 1, Math.random() * 2 - 1])
            let smallNumTeeth =  7 + Math.floor(6 * Math.random());
            
            let distance = (smallNumTeeth + numTeeth) / (2 * Math.PI * teethPerCircumference) + teethExtrude + 2
            pos = [prevPos[0] + distance * direction[0], prevPos[1] + distance * direction[1]]

            let angle = Math.atan2(direction[1], direction[0])
            gears.push(new Gear(smallNumTeeth, prevPos, angle - 2 * Math.PI / smallNumTeeth / 4, hatchAmount, hatchAngle - 90))
            gears.push(new Gear(numTeeth, pos, angle + Math.PI, hatchAmount, hatchAngle))
        }
        else {
            gears.push(new Gear(numTeeth, pos, 0, hatchAmount, hatchAngle))
        }
        
        prevPos = pos
    }
}

function walk(i) {
    if (i == 0) init();
    let gear = gears[gears.length - 1 - i]
    gear.draw()
    
    return i < gears.length - 1
}

class Gear {
    // TODO: rotation is in radians while hatch angle is in degrees
    constructor(numTeeth, pos, rotation, hatchDensity = -1, hatchAngle = 0) {
        this.numTeeth = numTeeth
        this.radius = numTeeth / (2 * Math.PI * teethPerCircumference) // 2 * radius * Math.PI * teethPerCircumference
        this.pos = pos
        this.rotation = rotation
        this.hatchDensity = hatchDensity
        this.hatchAngle = hatchAngle
    }
    
    draw() {
        this.drawPoints(this.getAxisPoints(axisRadius))
        this.drawPoints(this.getToothPoints(this.numTeeth, this.radius, this.rotation, teethExtrude), this.hatchAngle, this.hatchDensity)
    }
    
    drawPoints(points, hatchAngle = 0, hatchDensity = 0) {
        const p = polygons.create()
        points.forEach(point => p.addPoints(point))
        p.addOutline()
        if (hatchDensity != 0) {
            p.addHatching(hatchAngle * deg2rad, hatchDensity)
            p.addHatching((hatchAngle + 90 * Math.random()) * deg2rad, hatchDensity)
        }        
        polygons.draw(turtle, p)
    }
    
    getToothPoints() {
        return [...Array(this.numTeeth).keys()].map((a) => {
            return [...Array(5).keys()].map((b) => {
                let angle = 2 * Math.PI * (a + (b/4)) / this.numTeeth + this.rotation
                let extr = (b == 1 || b == 2) ? teethExtrude : 0
                return [(this.radius + extr) * Math.cos(angle) + this.pos[0], (this.radius + extr) * Math.sin(angle) + this.pos[1]]
            })
        }).flat(1)
    }
    
    getAxisPoints() {
        return [...Array(10).keys()].map((a) => {
            let angle = 2 * Math.PI * a/10
            return [axisRadius * Math.cos(angle) + this.pos[0], axisRadius * Math.sin(angle) + this.pos[1]]
        })
    }    
}

// some utils

const deg2rad = Math.PI * 2 / 360

function normalize(a) {
    let mag = Math.sqrt(a[0] * a[0] + a[1] * a[1])
    return [a[0]/ mag, a[1] / mag]
}

let dotTurtle = new Turtle()
function drawDot(pos, radius = 1) {
    dotTurtle.penup()
    dotTurtle.goto(pos[0], pos[1] - radius)
    dotTurtle.pendown()
    for (let i = 0; i < 10; i++) dotTurtle.circle(radius)
}


////////////////////////////////////////////////////////////////
// reinder's occlusion code parts from "Cubic space division #2"
// Optimizations and code clean-up by ge1doot
////////////////////////////////////////////////////////////////

function Polygons() {
	const polygonList = [];
	const linesDrawn = [];
	const Polygon = class {
		constructor() {
			this.cp = [];       // clip path: array of [x,y] pairs
			this.dp = [];       // 2d line to draw
			this.aabb = [];     // AABB bounding box
		}
		addPoints(...points) {
		    for (let i = 0; i < points.length; i++) this.cp.push(points[i]);
		    this.aabb = this.AABB();
		}
		addSegments(...points) {
		    for (let i = 0; i < points.length; i++) this.dp.push(points[i]);
		}
		addOutline(s = 0) {
			for (let i = s, l = this.cp.length; i < l; i++) {
				this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
			}
		}
		createPoly(x, y, c, r, a) {
			this.cp.length = 0;
			for (let i = 0; i < c; i++) {
				this.cp.push([
					x + Math.sin(i * Math.PI * 2 / c + a) * r,
					y + Math.cos(i * Math.PI * 2 / c + a) * r
				]);
			}
			this.aabb = this.AABB();
		}
		draw(t) {
			if (this.dp.length === 0) return;
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const d0 = this.dp[i];
				const d1 = this.dp[i + 1];
				const line_hash =
					Math.min(d0[0], d1[0]).toFixed(2) +
					"-" +
					Math.max(d0[0], d1[0]).toFixed(2) +
					"-" +
					Math.min(d0[1], d1[1]).toFixed(2) +
					"-" +
					Math.max(d0[1], d1[1]).toFixed(2);

				if (!linesDrawn[line_hash]) {
					t.penup();
					t.goto(d0);
					t.pendown();
					t.goto(d1);
					linesDrawn[line_hash] = true;
				}
			}
		}
		AABB() {
			let xmin = 2000;
			let xmax = -2000;
			let ymin = 2000;
			let ymax = -2000;
			for (let i = 0, l = this.cp.length; i < l; i++) {
				const x = this.cp[i][0];
				const y = this.cp[i][1];
				if (x < xmin) xmin = x;
				if (x > xmax) xmax = x;
				if (y < ymin) ymin = y;
				if (y > ymax) ymax = y;
			}
			// Bounding box: center x, center y, half w, half h
			return [
				(xmin + xmax) * 0.5,
				(ymin + ymax) * 0.5,
				(xmax - xmin) * 0.5,
				(ymax - ymin) * 0.5
			];
		}
		addHatching(a, d) {
			const tp = new Polygon();
			tp.cp.push(
			    [this.aabb[0] - this.aabb[2], this.aabb[1] - this.aabb[3]],
			    [this.aabb[0] + this.aabb[2], this.aabb[1] - this.aabb[3]],
			    [this.aabb[0] + this.aabb[2], this.aabb[1] + this.aabb[3]],
			    [this.aabb[0] - this.aabb[2], this.aabb[1] + this.aabb[3]]
			);
			const dx = Math.sin(a) * d, dy = Math.cos(a) * d;
			const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
			for (let i = 0.5; i < 150 / d; i++) {
				tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]);
				tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
			}
			tp.boolean(this, false);
			for (let i = 0, l = tp.dp.length; i < l; i++) this.dp.push(tp.dp[i]);
		}
		inside(p) {
			// find number of i ntersection points from p to far away
			// if even your outside
			const p1 = [0.1, -1000];
			let int = 0;
			for (let i = 0, l = this.cp.length; i < l; i++) {
				if (
					this.vec2_find_segment_intersect(
						p,
						p1,
						this.cp[i],
						this.cp[(i + 1) % l]
					) !== false
				) {
					int++;
				}
			}
			return int & 1;
		}
		boolean(p, diff = true) {
			// polygon diff algorithm (narrow phase)
			const ndp = [];
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const ls0 = this.dp[i];
				const ls1 = this.dp[i + 1];
				// find all intersections with clip path
				const int = [];
				for (let j = 0, cl = p.cp.length; j < cl; j++) {
					const pint = this.vec2_find_segment_intersect(
						ls0,
						ls1,
						p.cp[j],
						p.cp[(j + 1) % cl]
					);
					if (pint !== false) {
						int.push(pint);
					}
				}
				if (int.length === 0) {
					// 0 intersections, inside or outside?
					if (diff === !p.inside(ls0)) {
						ndp.push(ls0, ls1);
					}
				} else {
					int.push(ls0, ls1);
					// order intersection points on line ls.p1 to ls.p2
					const cmpx = ls1[0] - ls0[0];
					const cmpy = ls1[1] - ls0[1];
					for (let i = 0, len = int.length; i < len; i++) {
					    let j = i;
					    const item = int[j];
						for (
							const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy;
							j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db;
							j--
						) int[j] = int[j - 1];
						int[j] = item;
					}
					for (let j = 0; j < int.length - 1; j++) {
						if (
							(int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01
						) {
							if (
								diff ===
								!p.inside([
									(int[j][0] + int[j + 1][0]) / 2,
									(int[j][1] + int[j + 1][1]) / 2
								])
							) {
								ndp.push(int[j], int[j + 1]);
							}
						}
					}
				}
			}
			this.dp = ndp;
			return this.dp.length > 0;
		}
		//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
		vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) {
			const d =
				(l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) -
				(l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
			if (d === 0) return false;
			const n_a =
				(l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) -
				(l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
			const n_b =
				(l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) -
				(l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
			const ua = n_a / d;
			const ub = n_b / d;
			if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
				return [
					l1p1[0] + ua * (l1p2[0] - l1p1[0]),
					l1p1[1] + ua * (l1p2[1] - l1p1[1])
				];
			}
			return false;
		}
	};
	return {
		list() {
			return polygonList;
		},
		create() {
			return new Polygon();
		},
		draw(turtle, p) {
			let vis = true;
			for (let j = 0; j < polygonList.length; j++) {
				const p1 = polygonList[j];
				// AABB overlapping test - still O(N2) but very fast
				if (
					Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 &&
					Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0
				) {
					if (p.boolean(p1) === false) {
						vis = false;
						break;
					}
				}
			}
			if (vis) {
				p.draw(turtle);
				polygonList.push(p);
			}
		}
	};
}