For automated patent-filing
Log in to post a comment.
Canvas.setpenopacity(.25); const polygons = Polygons(); const turtle = new Turtle(); let numGearSets = 10 let teethExtrude = 4 let teethPerCircumference = 0.15 let axisRadius = 4 let gears = [] function init() { let prevPos = [0, 0] for (let i = 0; i < numGearSets; i++) { let numTeeth = 20 + Math.floor(20 * Math.random()); let hatchAngle = 45 + Math.random() * 20 let hatchAmount = 0.25 * (1 + (i % 2 == 0 ? 1 : 4) * i/numGearSets) let pos = [0, 0] if (i > 0) { let direction = normalize([Math.random() * 2 - 1, Math.random() * 2 - 1]) let smallNumTeeth = 7 + Math.floor(6 * Math.random()); let distance = (smallNumTeeth + numTeeth) / (2 * Math.PI * teethPerCircumference) + teethExtrude + 2 pos = [prevPos[0] + distance * direction[0], prevPos[1] + distance * direction[1]] let angle = Math.atan2(direction[1], direction[0]) gears.push(new Gear(smallNumTeeth, prevPos, angle - 2 * Math.PI / smallNumTeeth / 4, hatchAmount, hatchAngle - 90)) gears.push(new Gear(numTeeth, pos, angle + Math.PI, hatchAmount, hatchAngle)) } else { gears.push(new Gear(numTeeth, pos, 0, hatchAmount, hatchAngle)) } prevPos = pos } } function walk(i) { if (i == 0) init(); let gear = gears[gears.length - 1 - i] gear.draw() return i < gears.length - 1 } class Gear { // TODO: rotation is in radians while hatch angle is in degrees constructor(numTeeth, pos, rotation, hatchDensity = -1, hatchAngle = 0) { this.numTeeth = numTeeth this.radius = numTeeth / (2 * Math.PI * teethPerCircumference) // 2 * radius * Math.PI * teethPerCircumference this.pos = pos this.rotation = rotation this.hatchDensity = hatchDensity this.hatchAngle = hatchAngle } draw() { this.drawPoints(this.getAxisPoints(axisRadius)) this.drawPoints(this.getToothPoints(this.numTeeth, this.radius, this.rotation, teethExtrude), this.hatchAngle, this.hatchDensity) } drawPoints(points, hatchAngle = 0, hatchDensity = 0) { const p = polygons.create() points.forEach(point => p.addPoints(point)) p.addOutline() if (hatchDensity != 0) { p.addHatching(hatchAngle * deg2rad, hatchDensity) p.addHatching((hatchAngle + 90 * Math.random()) * deg2rad, hatchDensity) } polygons.draw(turtle, p) } getToothPoints() { return [...Array(this.numTeeth).keys()].map((a) => { return [...Array(5).keys()].map((b) => { let angle = 2 * Math.PI * (a + (b/4)) / this.numTeeth + this.rotation let extr = (b == 1 || b == 2) ? teethExtrude : 0 return [(this.radius + extr) * Math.cos(angle) + this.pos[0], (this.radius + extr) * Math.sin(angle) + this.pos[1]] }) }).flat(1) } getAxisPoints() { return [...Array(10).keys()].map((a) => { let angle = 2 * Math.PI * a/10 return [axisRadius * Math.cos(angle) + this.pos[0], axisRadius * Math.sin(angle) + this.pos[1]] }) } } // some utils const deg2rad = Math.PI * 2 / 360 function normalize(a) { let mag = Math.sqrt(a[0] * a[0] + a[1] * a[1]) return [a[0]/ mag, a[1] / mag] } let dotTurtle = new Turtle() function drawDot(pos, radius = 1) { dotTurtle.penup() dotTurtle.goto(pos[0], pos[1] - radius) dotTurtle.pendown() for (let i = 0; i < 10; i++) dotTurtle.circle(radius) } //////////////////////////////////////////////////////////////// // reinder's occlusion code parts from "Cubic space division #2" // Optimizations and code clean-up by ge1doot //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const linesDrawn = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw this.aabb = []; // AABB bounding box } addPoints(...points) { for (let i = 0; i < points.length; i++) this.cp.push(points[i]); this.aabb = this.AABB(); } addSegments(...points) { for (let i = 0; i < points.length; i++) this.dp.push(points[i]); } addOutline(s = 0) { for (let i = s, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } createPoly(x, y, c, r, a) { this.cp.length = 0; for (let i = 0; i < c; i++) { this.cp.push([ x + Math.sin(i * Math.PI * 2 / c + a) * r, y + Math.cos(i * Math.PI * 2 / c + a) * r ]); } this.aabb = this.AABB(); } draw(t) { if (this.dp.length === 0) return; for (let i = 0, l = this.dp.length; i < l; i+=2) { const d0 = this.dp[i]; const d1 = this.dp[i + 1]; const line_hash = Math.min(d0[0], d1[0]).toFixed(2) + "-" + Math.max(d0[0], d1[0]).toFixed(2) + "-" + Math.min(d0[1], d1[1]).toFixed(2) + "-" + Math.max(d0[1], d1[1]).toFixed(2); if (!linesDrawn[line_hash]) { t.penup(); t.goto(d0); t.pendown(); t.goto(d1); linesDrawn[line_hash] = true; } } } AABB() { let xmin = 2000; let xmax = -2000; let ymin = 2000; let ymax = -2000; for (let i = 0, l = this.cp.length; i < l; i++) { const x = this.cp[i][0]; const y = this.cp[i][1]; if (x < xmin) xmin = x; if (x > xmax) xmax = x; if (y < ymin) ymin = y; if (y > ymax) ymax = y; } // Bounding box: center x, center y, half w, half h return [ (xmin + xmax) * 0.5, (ymin + ymax) * 0.5, (xmax - xmin) * 0.5, (ymax - ymin) * 0.5 ]; } addHatching(a, d) { const tp = new Polygon(); tp.cp.push( [this.aabb[0] - this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] + this.aabb[3]], [this.aabb[0] - this.aabb[2], this.aabb[1] + this.aabb[3]] ); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); for (let i = 0, l = tp.dp.length; i < l; i++) this.dp.push(tp.dp[i]); } inside(p) { // find number of i ntersection points from p to far away // if even your outside const p1 = [0.1, -1000]; let int = 0; for (let i = 0, l = this.cp.length; i < l; i++) { if ( this.vec2_find_segment_intersect( p, p1, this.cp[i], this.cp[(i + 1) % l] ) !== false ) { int++; } } return int & 1; } boolean(p, diff = true) { // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.vec2_find_segment_intersect( ls0, ls1, p.cp[j], p.cp[(j + 1) % cl] ); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; for (let i = 0, len = int.length; i < len; i++) { let j = i; const item = int[j]; for ( const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy; j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db; j-- ) int[j] = int[j - 1]; int[j] = item; } for (let j = 0; j < int.length - 1; j++) { if ( (int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01 ) { if ( diff === !p.inside([ (int[j][0] + int[j + 1][0]) / 2, (int[j][1] + int[j + 1][1]) / 2 ]) ) { ndp.push(int[j], int[j + 1]); } } } } } this.dp = ndp; return this.dp.length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [ l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1]) ]; } return false; } }; return { list() { return polygonList; }, create() { return new Polygon(); }, draw(turtle, p) { let vis = true; for (let j = 0; j < polygonList.length; j++) { const p1 = polygonList[j]; // AABB overlapping test - still O(N2) but very fast if ( Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 && Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0 ) { if (p.boolean(p1) === false) { vis = false; break; } } } if (vis) { p.draw(turtle); polygonList.push(p); } } }; }