Log in to post a comment.
// TODO: // fix buggy marching squares // add compass // const randomSeed = 'abcdef' const randomSeed = 1 // min=1, max=10, step=0.01 class Vec2 { constructor(x, y) { this.x = x this.y = y } rotate(angle) { return new Vec2( this.x * Math.cos(angle) - this.y * Math.sin(angle), this.x * Math.sin(angle) + this.y * Math.cos(angle) ) } multn(n) { return new Vec2(this.x * n, this.y * n) } add(pt) { return new Vec2(this.x + pt.x, this.y + pt.y) } index(size) { return Math.floor(this.x) + Math.floor(this.y) * size } equals(pt) { return this.x === pt.x && this.y === pt.y } lerp(pt, fract) { return new Vec2(lerp(this.x, pt.x, fract), lerp(this.y, pt.y, fract)) } distance(pt) { return Math.sqrt((this.x - pt.x) ** 2 + (this.y - pt.y) ** 2) } floor(pt) { return new Vec2(Math.floor(this.x), Math.floor(this.y)) } addX(x) { return new Vec2(this.x + x, this.y) } addY(y) { return new Vec2(this.x, this.y + y) } } // heightmap const size = 192 const heights = [...Array(size * size)].map(i => 0) Canvas.setpenopacity(1) const turtle = new Turtle() // render scale const scale = 1 // drawing helpers function transformPoint(pt, height) { return new Vec2((pt.x - size / 2) * scale, (pt.y - size / 2) * scale - height * 10) } function goto(pt, height) { const coord = transformPoint(pt, height) turtle.goto(coord.x, coord.y) } function line(a, aHeight, b, bHeight) { turtle.penup() goto(a, aHeight) turtle.pendown() goto(b, bHeight) } let patternedLineState = { segmentLength: 1, down: true, last: null, segmentCount: -1 } const waterLinePattern = [[1, 2, 3], [5, 10, 3]] const shorelineWavesLinePattern = [[4, 6, 8], [6, 8, 10]] const shorelineLinePattern = [[12, 14, 16], [14, 16, 18]] function drawPatternedLine(points, height, pattern) { if (points.length === 0) return patternedLineState = { segmentLength: 1, down: false, last: null, segmentCount: -1 } turtle.penup() goto(points[0], getHeight(points[0])) points.forEach(pt => drawPatternedLineSegment(pt, height, pattern)) } function drawPatternedLineSegment(pt, height, pattern) { let toPt = transformPoint(pt, height) if (!patternedLineState.last) { patternedLineState.last = toPt } const dist = toPt.distance(patternedLineState.last) let distLeft = dist let drawn = 0 while (distLeft > patternedLineState.segmentLength) { distLeft -= patternedLineState.segmentLength drawn += patternedLineState.segmentLength const partwayPt = patternedLineState.last.lerp(toPt, drawn / dist) turtle.goto(partwayPt.x, partwayPt.y) patternedLineState.down = !patternedLineState.down if (patternedLineState.down) { turtle.pendown() } else { turtle.penup() } if (patternedLineState.segmentCount === -1 || patternedLineState.segmentCount > 0) { patternedLineState.segmentLength = randomFrom(pattern[patternedLineState.down ? 1 : 0]) if (patternedLineState.segmentCount > 0) patternedLineState.segmentCount -= 1 } if (patternedLineState.segmentCount === 0) { break } } turtle.goto(toPt.x, toPt.y) patternedLineState.segmentLength -= distLeft patternedLineState.last = toPt } // marching squares / isoline function findIsolines(height) { const visited = {} const lines = [] let x = 1, y = 1 while (y < size) { let [pt, line] = march(x, y, visited, height) if (pt) { lines.push(line) x = pt.x y = pt.y } else { break } x += 1 if (x >= size) { x = 1 y += 1 } } return lines } function march(x, y, visited, height) { let first let isOnBorder = false const line = [] // find the starting point while (y < size) { const index = x + y * size if (heights[index] >= height && !visited[index]) { first = new Vec2(x, y) break } x += 1 if (x >= size) { x = 1 y += 1 } } // if no starting point, return an empty line if (!first) { return [first, line] } let i = 0 let pt = first let index = pt.index(size) visited[index] = true loop: while (i < 9999) { // we have looped back to the beginning of the line if (line.length > 1 && pt.equals(first)) { break } index = pt.index(size) let isoPt switch(marchStep(pt, height)) { case 0: // up isoPt = new Vec2( map(height, heights[index - size - 1], heights[index - size], pt.x - 1, pt.x), pt.y - 1 ) pt = pt.addY(-1) break case 1: // right isoPt = new Vec2( pt.x, map(height, heights[index - size], heights[index], pt.y - 1, pt.y) ) pt = pt.addX(1) break case 2: // down isoPt = new Vec2( map(height, heights[index - 1], heights[index], pt.x - 1, pt.x), pt.y ) pt = pt.addY(1) break case 3: // left isoPt = new Vec2( pt.x - 1, map(height, heights[index - size - 1], heights[index - 1], pt.y - 1, pt.y) ) pt = pt.addX(-1) break default: break loop } visited[pt.index(size)] = true line.push(isoPt) i++ } return [first, line] } let savedState function marchStep(pt, height) { const prevState = savedState const index = pt.index(size) const indexes = [index - size - 1, index - size, index - 1, index] const accums = indexes.map(i => heights[i] >= height) const state = accums.reduce((acc, curr, index) => acc + (curr ? (1 << index) : 0), 0) savedState = state switch (state) { case 1: return 0 // up case 2: case 3: return 1 // right case 4: return 3 // left case 5: return 0 case 6: return prevState === 0 ? 3 : 1 case 7: return 1 case 8: return 2 // down case 9: return prevState === 1 ? 0 : 2 case 10: case 11: return 2 case 12: return 3 case 13: return 0 case 14: return 3 default: return } } // land generation function createLand() { buildLand() smoothLand() normalizeLand() emphasizeMountains() } function buildLand() { const halfSize = size / 2 const allowedSize = halfSize * 0.85 const center = new Vec2(halfSize, halfSize) const possibleMoves = [-0.5, 0, 0.5] const count = 2 ** 16 let pt = new Vec2(size / 2, size / 2) for (let i = 0; i < count; i++) { heights[pt.index(size)] += 1 pt = pt.add(new Vec2(randomFrom(possibleMoves), randomFrom(possibleMoves))) if ( !isWithin(pt.x, center.x - allowedSize, center.x + allowedSize) || !isWithin(pt.y, center.y - allowedSize, center.y + allowedSize) ) { pt = center.add(new Vec2(halfSize * (Random.random() - 0.5), halfSize * (Random.random() - 0.5))) } } } function smoothLand() { for (let i = 0; i < 10; i++) { for (let y = 1; y < size - 1; y++) { for (let x = 1; x < size - 1; x++) { const pt = new Vec2(x, y) const points = [ pt, pt, pt.addX(-1), pt.addX(1), pt.addY(-1), pt.addY(1) ] heights[pt.index(size)] = avg(points.map(pt => getHeight(pt))) } } } } function normalizeLand() { const max = heights.reduce((acc, curr) => Math.max(acc, curr), 0) for (let i = 0; i < heights.length; i++) { heights[i] = heights[i] / max } } function emphasizeMountains() { for (let i = 0; i < heights.length; i++) { if (heights[i] > 0.6) { heights[i] *= map(Random.random(), 0, 1, 1, 1.35) } } } // helpers function getHeight(pt) { return heights[pt.index(size)] } function avg(items) { return items.reduce((acc, curr) => acc + curr, 0) / items.length } function map(v, min, max, omin, omax) { return omin + (v - min) / (max - min) * (omax - omin) } function clamp(v, min, max) { return Math.max(Math.min(v, max), min) } function lerp(a, b, fract) { return a + (b - a) * fract } function randomFrom(arr) { return arr[Math.floor(Random.random() * arr.length)] } function isWithin(x, min, max) { return min <= x && x <= max } // main loop function walk(i) { switch (i) { case 0: case 1: case 2: case 3: case 4: renderGrid(i) break case 5: renderShoreline() break case 6: renderShorelineWaves() break case 7: return false } return true } // rendering function renderGrid(i) { for (let y = 0; y < size; y++) { let drawingWater = false for (let x = 0; x < size; x++) { const ptA = new Vec2(x - 1, y) const ptB = new Vec2(x, y) const heightA = getHeight(ptA) const heightB = getHeight(ptB) switch (i) { case 0: drawingWater = renderWater(ptB, heightB, drawingWater) break case 1: renderBeach(ptA, heightA, ptB, heightB) break case 2: renderHills(ptA, heightA, ptB, heightB) break case 3: renderTrees(ptA, heightA, ptB, heightB) break case 4: renderMountains(ptA, heightA, ptB, heightB) break } } } } function renderWater(pt, height, drawingWater) { if (height < 0.001) { if (!drawingWater && Random.random() < 0.00125) { drawingWater = true turtle.penup() patternedLineState = { segmentLength: randomFrom(waterLinePattern[0]), segmentCount: 5, last: null, down: false } } if (drawingWater) { drawPatternedLineSegment(pt, 0, waterLinePattern) if (patternedLineState.segmentCount === 0) { drawingWater = false } } } else { drawingWater = false } return drawingWater } function renderBeach(ptA, heightA, ptB, heightB) { const min = 0.05 const max = 0.1 const isBeach = min <= heightB && heightA <= max || min <= heightA && heightB <= max if (!isBeach) return const sfract = clamp(map(min, heightA, heightB, 0, 1), 0, 1) const efract = clamp(map(max, heightA, heightB, 0, 1), 0, 1) const fract1 = lerp(sfract, efract, Random.random()) const fract2 = fract1 + 0.2 const saccum = map(fract1, 0, 1, heightA, heightB) const eaccum = map(fract2, 0, 1, heightA, heightB) const spt = ptA.lerp(ptB, fract1) const ept = ptA.lerp(ptB, fract2) line(spt, saccum, ept, eaccum) } function renderHills(ptA, heightA, ptB, heightB) { const min = 0.1 const max = 0.25 const isHills = heightA <= max && heightB >= min || heightA >= min && heightB <= max if (!isHills) return if (Random.random() < 0.75) { const sfract = clamp(map(min, heightA, heightB, 0, 1), 0, 1) const efract = clamp(map(max, heightA, heightB, 0, 1), 0, 1) const saccum = map(sfract, 0, 1, heightA, heightB) const eaccum = map(efract, 0, 1, heightA, heightB) const spt = ptA.lerp(ptB, sfract) const ept = ptA.lerp(ptB, efract) line(spt, saccum, ept, eaccum) } } function renderTrees(ptA, heightA, ptB, heightB) { const min = 0.25 const max = 0.6 const isTrees = heightA <= max && heightB >= min || heightA >= min && heightB <= max if (!isTrees) return const sfract = clamp(map(min, heightA, heightB, 0, 1), 0, 1) const efract = clamp(map(max, heightA, heightB, 0, 1), 0, 1) // Don't draw trees if there is a mountain down from us const ptDown = ptB.addY(1) const heightDown = getHeight(ptDown) if (heightDown > 0.6) return const treeCount = map(Math.abs(0.5 - heightA), 0, 0.2, 5, 1) for (let i = 0; i < treeCount; i++) { const fract = lerp(sfract, efract, Random.random()) const accum = map(fract, 0, 1, heightA, heightB) const offs = new Vec2(Random.random() - 0.5, Random.random() - 0.5).multn(2) const pt = ptA.lerp(ptB, fract).add(offs) const treeHeight = 0.125 * Random.random() line(pt, accum, pt, accum + treeHeight) } } function renderMountains(ptA, heightA, ptB, heightB) { const min = 0.6 const isMountain = heightA >= min || heightB >= min if (!isMountain) return if (Random.random() < 0.5) { const leftPt = ptB.addX(-1) const leftHeight = getHeight(leftPt) const rightPt = ptB.addX(1) const rightHeight = getHeight(rightPt) if (leftHeight < heightB && rightHeight < heightB) { line(leftPt, leftHeight, ptB, heightB) line(ptB, heightB, rightPt, rightHeight) } } } function renderShoreline() { const lines = findIsolines(0.05) lines.forEach(line => drawPatternedLine(line, 0.05, shorelineLinePattern)) } function renderShorelineWaves() { const lines = findIsolines(0.03) lines.forEach(line => drawPatternedLine(line, 0.03, shorelineWavesLinePattern)) } const lib = {} ;(function(lib) { /* I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace so it's better encapsulated. Now you can have multiple random number generators and they won't stomp all over eachother's state. If you want to use this as a substitute for Math.random(), use the random() method like so: var m = new MersenneTwister(); var randomNumber = m.random(); You can also call the other genrand_{foo}() methods on the instance. If you want to use a specific seed in order to get a repeatable random sequence, pass an integer into the constructor: var m = new MersenneTwister(123); and that will always produce the same random sequence. Sean McCullough (banksean@gmail.com) */ /* A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto. Before using, initialize the state by using init_genrand(seed) or init_by_array(init_key, key_length). Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Any feedback is very welcome. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) */ var MersenneTwister = function(seed) { if (seed == undefined) { seed = new Date().getTime(); } /* Period parameters */ this.N = 624; this.M = 397; this.MATRIX_A = 0x9908b0df; /* constant vector a */ this.UPPER_MASK = 0x80000000; /* most significant w-r bits */ this.LOWER_MASK = 0x7fffffff; /* least significant r bits */ this.mt = new Array(this.N); /* the array for the state vector */ this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */ this.init_genrand(seed); } /* initializes mt[N] with a seed */ MersenneTwister.prototype.init_genrand = function(s) { this.mt[0] = s >>> 0; for (this.mti=1; this.mti<this.N; this.mti++) { var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30); this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253) + this.mti; /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ this.mt[this.mti] >>>= 0; /* for >32 bit machines */ } } /* initialize by an array with array-length */ /* init_key is the array for initializing keys */ /* key_length is its length */ /* slight change for C++, 2004/2/26 */ MersenneTwister.prototype.init_by_array = function(init_key, key_length) { var i, j, k; this.init_genrand(19650218); i=1; j=0; k = (this.N>key_length ? this.N : key_length); for (; k; k--) { var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30) this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525))) + init_key[j] + j; /* non linear */ this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */ i++; j++; if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; } if (j>=key_length) j=0; } for (k=this.N-1; k; k--) { var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30); this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941)) - i; /* non linear */ this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */ i++; if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; } } this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ } /* generates a random number on [0,0xffffffff]-interval */ MersenneTwister.prototype.genrand_int32 = function() { var y; var mag01 = new Array(0x0, this.MATRIX_A); /* mag01[x] = x * MATRIX_A for x=0,1 */ if (this.mti >= this.N) { /* generate N words at one time */ var kk; if (this.mti == this.N+1) /* if init_genrand() has not been called, */ this.init_genrand(5489); /* a default initial seed is used */ for (kk=0;kk<this.N-this.M;kk++) { y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK); this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (;kk<this.N-1;kk++) { y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK); this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK); this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; /* Tempering */ y ^= (y >>> 11); y ^= (y << 7) & 0x9d2c5680; y ^= (y << 15) & 0xefc60000; y ^= (y >>> 18); return y >>> 0; } /* generates a random number on [0,0x7fffffff]-interval */ MersenneTwister.prototype.genrand_int31 = function() { return (this.genrand_int32()>>>1); } /* generates a random number on [0,1]-real-interval */ MersenneTwister.prototype.genrand_real1 = function() { return this.genrand_int32()*(1.0/4294967295.0); /* divided by 2^32-1 */ } /* generates a random number on [0,1)-real-interval */ MersenneTwister.prototype.random = function() { return this.genrand_int32()*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on (0,1)-real-interval */ MersenneTwister.prototype.genrand_real3 = function() { return (this.genrand_int32() + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on [0,1) with 53-bit resolution*/ MersenneTwister.prototype.genrand_res53 = function() { var a=this.genrand_int32()>>>5, b=this.genrand_int32()>>>6; return(a*67108864.0+b)*(1.0/9007199254740992.0); } lib.MersenneTwister = MersenneTwister /* These real versions are due to Isaku Wada, 2002/01/09 added */ })(lib) const { MersenneTwister } = lib const Random = new MersenneTwister(randomSeed) createLand()