Log in to post a comment.
// Bezier Truchet tiles. Created by Reinder Nijhoff 2019 - @reindernijhoff // // https://turtletoy.net/turtle/f107e05a76 // const turtle = new Turtle(); const scale = 12; const type = 1; // min=0, max=4, step=1 (Quad, Double Quad, Double Quad / Brick layout, Double Triangle, Hexagon) const lineWidth = .4; // min=0.1, max=0.4, step=0.01 const curviness = .95; // min=0.0, max=1.0, step=0.01 const innerLines = 2; // min=0, max=9, step=1 const lineWGradient = .0; // min=-1.0, max=1.0, step=0.01 const generateTile = generateTileFactory(type); function drawTile(t, tile) { if (Math.abs(scale*tile.center[0]) > 100+scale || Math.abs(scale*tile.center[1]) > 100+scale) return; // early discard const polys = new Polygons(); const lw = lineWidth * tile.lineWidth; // transform const ts = p => [scale*(p[0]+tile.center[0]),scale*(p[1]+tile.center[1])]; // vec2 helper functions const add = (a, b) => [a[0]+b[0], a[1]+b[1]]; const sub = (a, b) => [a[0]-b[0], a[1]-b[1]]; const scl = (a, b) => [a[0]*b, a[1]*b]; const dst = (a, b) => Math.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2); const bez = (p0, p1, p2, p3, t) => { const k = 1 - t; return [ k*k*k*p0[0] + 3*k*k*t*p1[0] + 3*k*t*t*p2[0] + t*t*t*p3[0], k*k*k*p0[1] + 3*k*k*t*p1[1] + 3*k*t*t*p2[1] + t*t*t*p3[1] ]; } // helper function: add a bezier curve to a polygon p. const addBezier = (p, p0, d0, p1, d1, dist, asEdge, asLine) => { // scale dist based on x and lineWidthGradient const dist0 = dist * (ts(p0)[0]/200 * -lineWGradient + 1 - .5*Math.abs(lineWGradient)); const dist1 = dist * (ts(p1)[0]/200 * -lineWGradient + 1 - .5*Math.abs(lineWGradient)); // calculate start, end and control points for bezier const sp = sub(p0, scl([d0[1],-d0[0]], dist0)), ep = add(p1, scl([d1[1],-d1[0]], dist1)), curve = curviness*(dst(sp,ep)**(2/3))*tile.lineWidth, sc = add(sp, scl(d0,curve)), ec = add(ep, scl(d1,curve)); const points = []; for (let i=0, steps=10; i<=steps; i++) { points.push(ts(bez(sp, sc, ec, ep, i/steps))); } if (asEdge) p.addPoints(...points); if (asLine) { for (let i=0, steps=10; i<steps; i++) p.addSegments(points[i],points[i+1]); } } // shuffle points of tile -> this gives the random connections const p = tile.points.sort(() => Math.random()-.5); // create and draw a bezier-based polygon for each connection for (let i=0; i<p.length; i+=2) { const s = p[i+0], e = p[i+1], l = polys.create(); addBezier(l, s[0], s[1], e[0], e[1], lw, true, true); addBezier(l, e[0], e[1], s[0], s[1], lw, true, true); for (let j=0; j<innerLines; j++) { addBezier(l, e[0], e[1], s[0], s[1], 2*lw*(j+1)/(innerLines+1)-lw, false, true); } polys.draw(t, l); } } function walk(i) { const s = (200/scale|0)+2; const y = Math.floor(i/(s*2))-s, x = (i % (s*2)) - s; drawTile(turtle, generateTile(x,y)); return i < s*s*4; } // A tile has a center and a set of points (positions + directions). The points will be used as // start or end point of the bezier curves. function generateTileFactory(t) { switch(t) { case 0: return (x,y) => { return { // quad center: [x,y], lineWidth: 1, points: [[[0,.5],[0,-1]], [[0,-.5],[0,1]], [[.5,0],[-1,0]],[[-.5,0],[1,0]]] }}; case 1: return (x,y) => { return { // double quad center: [x,y], lineWidth: .5, points: [[[.25,.5],[0,-1]], [[.25,-.5],[0,1]], [[.5,.25],[-1,0]],[[-.5,.25],[1,0]], [[-.25,.5],[0,-1]], [[-.25,-.5],[0,1]], [[.5,-.25],[-1,0]],[[-.5,-.25],[1,0]]] }}; case 2: return (x,y) => { return { // double quad - shifted center: [x + (y % 2 == 0 ? .5 : 0),y], lineWidth: .5, points: [[[.25,.5],[0,-1]], [[.25,-.5],[0,1]], [[.5,.25],[-1,0]],[[-.5,.25],[1,0]], [[-.25,.5],[0,-1]], [[-.25,-.5],[0,1]], [[.5,-.25],[-1,0]],[[-.5,-.25],[1,0]]] }}; case 3: return (x,y) => { // double triangle const h = Math.sqrt(3)/4; let points = [[[-.25,-h],[0,1]],[[.25,-h],[0,1]], [[-1/3,-h/3],[2*h,-.5]],[[-1/6,h/3],[2*h,-.5]], [[1/3,-h/3],[-2*h,-.5]],[[1/6,h/3],[-2*h,-.5]]]; if (x % 2 != 0) points = points.map(p => [[p[0][0],-p[0][1]],[p[1][0],-p[1][1]]]); return { center: [x*.5 + (y % 2 == 0 ? .5 : 0), y*h*2], lineWidth: .35, points }}; case 4: return (x,y) => { // hexagon const h = Math.sqrt(3)/4; let points = [[[0,-h],[0,1]],[[0,h],[0,-1]], [[-3/8,-h/2],[2*h,.5]],[[-3/8,h/2],[2*h,-.5]], [[ 3/8,-h/2],[-2*h,.5]],[[3/8,h/2],[-2*h,-.5]]]; return { center: [x*.75, y*2*h + ((x % 2 != 0) ? 0:h)], lineWidth: .6, points }}; } } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }