Physics-y
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(0.1); // movement parameters const numSteps = 150 const maxBallWeight = 140 const simulationTimeEnd = 6 const initPos = [1, 4, 4] const initSpeed = [-7.2, 0, -0.7] const acceleration = [0.1, -9.8, 0] const limitMin = [-3, -1, -100] const limitMax = [3, 100, 100] const bounceSpeedLoss = [0.78, 0.88, 1] // perun var camera let turtle = new Turtle() let startDist, endDist function init() { camera = new Camera([0.5, 3, -5], [0, 0.5, 3]) startDist = distance(getPosition(0), camera.position) endDist = distance(getPosition(simulationTimeEnd), camera.position) makeGridBox() } function walk(i) { let t = (i/numSteps + 0.5/numSteps) * simulationTimeEnd vertex = getPosition(t) let dist = distance(vertex, camera.position) let closeness = 1 - (dist - endDist) / (startDist - endDist) let size = 1 + closeness * 2 let weight = 0.3 + closeness drawBall(vertex, size, weight * maxBallWeight) return i < numSteps } function getPosition(t) { let x = getBouncingAcceleratedPos(t, initPos[0], initSpeed[0], acceleration[0], limitMin[0], limitMax[0], bounceSpeedLoss[0]) let y = getBouncingAcceleratedPos(t, initPos[1], initSpeed[1], acceleration[1], limitMin[1], limitMax[1], bounceSpeedLoss[1]) let z = getBouncingAcceleratedPos(t, initPos[2], initSpeed[2], acceleration[2], limitMin[2], limitMax[2], bounceSpeedLoss[2]) return [x, y, z] } function drawBall(pos, size, steps) { for (let i = 0; i < steps; i++) { let scale = i / steps; scale = Math.pow(scale, 0.6) drawCircle(pos, size * scale) } } let circleTurtle = new Turtle() // one turtle to rule them all function drawCircle(pos, size) { circleTurtle.penup() let screenPos = toScreen(pos, camera) // fake a highlight let addX = 0.25 * size; let addY = 0.45 * size; screenPos = [screenPos[0] + addX, screenPos[1] - addY] circleTurtle.goto(screenPos) circleTurtle.pendown() circleTurtle.circle(size) } function toScreen(vertex, camera, modelMatrix = []) { if (typeof finalMatrix === "undefined") finalMatrix = mat4.create() if (modelMatrix.length > 0) { mat4.multiply(finalMatrix, camera.getCameraMatrix(), modelMatrix) mat4.multiply(finalMatrix, camera.getPerspectiveMatrix(), finalMatrix) } else { mat4.multiply(finalMatrix, camera.getPerspectiveMatrix(), camera.getCameraMatrix()) } vertex = vertex.concat(1) vec4.transformMat4(vertex, vertex, finalMatrix) x = vertex[0] / vertex[3] y = vertex[1] / vertex[3] z = vertex[2] / vertex[3] // to canvas coords x = -x * 50 y = -y * 50 return [x, y, z] } // Camera function Camera(position, lookAt) { this.position = position this.lookAt = lookAt this.fov = 0.5 this.nearPlane = 1 this.farPlane = 1000 this.aspect = 1 this.projectionMatrix = [] this.cameraMatrix = [] this.dirty = true this.getPerspectiveMatrix = function() { this.updateMatrices() return this.projectionMatrix } this.getCameraMatrix = function() { this.updateMatrices() return this.cameraMatrix } this.updateMatrices = function() { if (this.dirty) { this.projectionMatrix = mat4.create() mat4.perspective(this.projectionMatrix, this.fov, this.aspect, this.nearPlane, this.farPlane) this.cameraMatrix = mat4.create() mat4.lookAt(this.cameraMatrix, camera.position, camera.lookAt, [0,1,0]) this.dirty = false } } } // Movement functions const MAX_BOUNCES = 100 function getBouncingAcceleratedPos(t, initPos, initPosSpeed, acceleration, lowerLimit, upperLimit, bounceSpeedLoss) { let value = getAcceleratedPos(t, initPos, initPosSpeed, acceleration) if (value >= lowerLimit && value <= upperLimit) return value let bounces = 0 let tOffset = 0 let posOffset = initPos let speedOffset = initPosSpeed let tBounce = t while ((value < lowerLimit || value > upperLimit) && bounces++ < MAX_BOUNCES) { let limit = value < lowerLimit ? lowerLimit : upperLimit tBounce = getTimeForAcceleratedPos(limit, posOffset, speedOffset, acceleration, tBounce) let afterBounceSpeed = getAcceleratedSpeed(tBounce, speedOffset, acceleration) * bounceSpeedLoss * -1 posOffset = limit speedOffset = afterBounceSpeed tOffset += tBounce value = getAcceleratedPos(t - tOffset, posOffset, speedOffset, acceleration) if (Math.abs(speedOffset) <= 0.01) break; } value = Math.min(Math.max(value, lowerLimit), upperLimit) // to counter rounding errors fromin previous loop if (bounces >= MAX_BOUNCES) { console.warn("Max bounces reached") return lowerLimit } else { return value } } function getAcceleratedPos(t, initPos, initSpeed, acceleration) { return initPos + initSpeed * t + 0.5 * acceleration * Math.pow(t, 2) } function getAcceleratedSpeed(t, initSpeed, acceleration) { return acceleration * t + initSpeed } // https://www.wolframalpha.com/input/?i=x+%3D+0.5+*+a+*+t%5E2+%2B+v*t+%2B+x0+solve+for+t function getTimeForAcceleratedPos(pos, initPos, initSpeed, acceleration, t) { if (acceleration == 0 && initSpeed != 0) { return (pos - initPos) / initSpeed } let result1 = -(Math.sqrt(2 * acceleration * (pos - initPos) + Math.pow(initSpeed, 2)) + initSpeed) / acceleration let result2 = (Math.sqrt(2 * acceleration * (pos - initPos) + Math.pow(initSpeed, 2)) - initSpeed) / acceleration // get the result closest to current t let result = Math.abs(result1 - t) < Math.abs(result2 - t) ? result1 : result2 return result } // misc function makeGridBox() { let modelMatrix = mat4.create() mat4.fromRotationTranslationScale(modelMatrix, quat.create(), [0, -1, 3], [1, 1, 1]) drawGrid(3, 3, modelMatrix) let rot = quat.create() quat.fromEuler(rot, 0, 0, -90) mat4.fromRotationTranslationScale(modelMatrix, rot, [-3, 2, 3], [1, 1, 1]) drawGrid(3, 3, modelMatrix) quat.fromEuler(rot, 0, 0, 90) mat4.fromRotationTranslationScale(modelMatrix, rot, [3, 2, 3], [1, 1, 1]) drawGrid(3, 3, modelMatrix) } let gridTurtle = new Turtle() function drawGrid(range, steps, modelMatrix) { for(let k = 0; k <= 1; k+=1/steps) { let coord = [-range, 0, (k * 2 - 1) * range] gridTurtle.penup() gridTurtle.goto(toScreen(coord, camera, modelMatrix)) coord[0] = range gridTurtle.pendown() gridTurtle.goto(toScreen(coord, camera, modelMatrix)) } for(let k = 0; k < 1; k+=1/steps) { let coord = [(k * 2 - 1) * range, 0, -range] gridTurtle.penup() gridTurtle.goto(toScreen(coord, camera, modelMatrix)) coord[2] = range gridTurtle.pendown() gridTurtle.goto(toScreen(coord, camera, modelMatrix)) } } function lerp(a, b, amount) { return a * (1 - amount) + b * amount } function distance(a, b) { return Math.sqrt(Math.pow((a[0] - b[0]), 2) + Math.pow((a[1] - b[1]), 2) + Math.pow((a[2] - b[2]), 2)) } // gl-matrix EPSILON = 0.00001; halfToRad = 0.5 * Math.PI / 180.0; function vec3() { this.add = function(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; return out; } this.subtract = function(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; return out; } this.multiply = function(out, a, b) { out[0] = a[0] * b[0]; out[1] = a[1] * b[1]; out[2] = a[2] * b[2]; return out; } this.normalize = function(out, a) { let x = a[0]; let y = a[1]; let z = a[2]; let len = x*x + y*y + z*z; if (len > 0) { //TODO: evaluate use of glm_invsqrt here? len = 1 / Math.sqrt(len); } out[0] = a[0] * len; out[1] = a[1] * len; out[2] = a[2] * len; return out; } this.scale = function(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; return out; } this.distance = function(a, b) { let x = b[0] - a[0]; let y = b[1] - a[1]; let z = b[2] - a[2]; return Math.sqrt(x*x + y*y + z*z); } this.dot = function (a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } this.transformMat4 = function(out, a, m) { let x = a[0], y = a[1], z = a[2]; let w = m[3] * x + m[7] * y + m[11] * z + m[15]; w = w || 1.0; out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w; out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w; out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w; return out; } } function vec4() { this.transformMat4 = function(out, a, m) { let x = a[0], y = a[1], z = a[2], w = a[3]; out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; return out; } } function mat4() { this.create = function() { return new Float32Array(16) } this.identity = function(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } this.lookAt = function(out, eye, center, up) { let x0, x1, x2, y0, y1, y2, z0, z1, z2, len; let eyex = eye[0]; let eyey = eye[1]; let eyez = eye[2]; let upx = up[0]; let upy = up[1]; let upz = up[2]; let centerx = center[0]; let centery = center[1]; let centerz = center[2]; if (Math.abs(eyex - centerx) < EPSILON && Math.abs(eyey - centery) < EPSILON && Math.abs(eyez - centerz) < EPSILON) { return identity(out); } z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } out[0] = x0; out[1] = y0; out[2] = z0; out[3] = 0; out[4] = x1; out[5] = y1; out[6] = z1; out[7] = 0; out[8] = x2; out[9] = y2; out[10] = z2; out[11] = 0; out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); out[15] = 1; return out; } this.multiply = function(out, a, b) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; // Cache only the current line of the second matrix let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33; return out; } this.perspective = function(out, fovy, aspect, near, far) { let f = 1.0 / Math.tan(fovy / 2), nf; out[0] = f / aspect; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = f; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[11] = -1; out[12] = 0; out[13] = 0; out[15] = 0; if (far != null && far !== Infinity) { nf = 1 / (near - far); out[10] = (far + near) * nf; out[14] = (2 * far * near) * nf; } else { out[10] = -1; out[14] = -2 * near; } return out; } this.fromRotationTranslationScale = function(out, q, v, s) { // Quaternion math let x = q[0], y = q[1], z = q[2], w = q[3]; let x2 = x + x; let y2 = y + y; let z2 = z + z; let xx = x * x2; let xy = x * y2; let xz = x * z2; let yy = y * y2; let yz = y * z2; let zz = z * z2; let wx = w * x2; let wy = w * y2; let wz = w * z2; let sx = s[0]; let sy = s[1]; let sz = s[2]; out[0] = (1 - (yy + zz)) * sx; out[1] = (xy + wz) * sx; out[2] = (xz - wy) * sx; out[3] = 0; out[4] = (xy - wz) * sy; out[5] = (1 - (xx + zz)) * sy; out[6] = (yz + wx) * sy; out[7] = 0; out[8] = (xz + wy) * sz; out[9] = (yz - wx) * sz; out[10] = (1 - (xx + yy)) * sz; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } this.invert = function(out, a) { let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3]; let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7]; let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11]; let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; let b00 = a00 * a11 - a01 * a10; let b01 = a00 * a12 - a02 * a10; let b02 = a00 * a13 - a03 * a10; let b03 = a01 * a12 - a02 * a11; let b04 = a01 * a13 - a03 * a11; let b05 = a02 * a13 - a03 * a12; let b06 = a20 * a31 - a21 * a30; let b07 = a20 * a32 - a22 * a30; let b08 = a20 * a33 - a23 * a30; let b09 = a21 * a32 - a22 * a31; let b10 = a21 * a33 - a23 * a31; let b11 = a22 * a33 - a23 * a32; // Calculate the determinant let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; return out; } } function quat() { this.create = function() { let out = []; out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 1; return out; } this.fromEuler = function(out, x, y, z) { x *= halfToRad; y *= halfToRad; z *= halfToRad; let sx = Math.sin(x); let cx = Math.cos(x); let sy = Math.sin(y); let cy = Math.cos(y); let sz = Math.sin(z); let cz = Math.cos(z); out[0] = sx * cy * cz - cx * sy * sz; out[1] = cx * sy * cz + sx * cy * sz; out[2] = cx * cy * sz - sx * sy * cz; out[3] = cx * cy * cz + sx * sy * sz; return out; } } vec3 = new vec3() // mimic static functions behavior vec4 = new vec4() quat = new quat() mat4 = new mat4() // end gl-matrix init()