Bad PCB design using minimum spanning tree.
Log in to post a comment.
// LL 2021
const pad_count = 100; // min=2 max=5000 step=1
const iterations = 10000; /// min=0 max=10000 step=1
const pad_size = 3; // min=0.1 max=10 step=0.1
const clearance = 0; // min=0 max=1 step=0.1
const alignment = 1.5; // min=0.1 max=10 step=0.1
const show_pads = 1; // min=0 max=1 step=1 (No,Yes)
const thick = 1; // min=0 max=1 step=1 (No,Yes)
const seed = 0; // min=0 max=100 step=1
const hole_size = pad_size / 2;
const trace_size = pad_size / 3;
Canvas.setpenopacity(1);
const turtle = new Turtle();
var rng;
var full_pad_list;
var lone_pad_list, used_pad_list;
var forbidden_trace_list;
var trace_list;
console.clear();
function walk(i, t) {
if (i==0) {
rng = new RNG(seed);
init_pads();
init_traces();
full_pad_list.forEach(p => p.draw());
} else {
do_iteration();
}
const keep_going = i < iterations * t && trace_list.length < (full_pad_list.length-1);
return keep_going;
}
function do_iteration() {
var i1 = -1, i2 = -1;
if (trace_list.length < 1) {
i1 = (rng.nextFloat() * full_pad_list.length) | 0;
i2 = findClosest(i1);
} else if (used_pad_list.length > 0 && lone_pad_list.length > 0) {
var min_dist = 10000;
for (var i=0; i<used_pad_list.length; i++) {
if (full_pad_list[used_pad_list[i]].closest_index >= 0 && lone_pad_list.indexOf(full_pad_list[used_pad_list[i]].closest_index) >= 0) {
i1 = used_pad_list[i];
i2 = full_pad_list[used_pad_list[i]].closest_index;
const dist = distance(i1, i2);
min_dist = dist;
} else {
for (var j=0; j<lone_pad_list.length; j++) {
if (trace_key(used_pad_list[i], lone_pad_list[j]) in forbidden_trace_list) continue;
const dist = distance(used_pad_list[i], lone_pad_list[j]);
if (min_dist > dist) {
i1 = used_pad_list[i];
i2 = lone_pad_list[j];
full_pad_list[i1].closest_index = i2;
min_dist = dist;
}
}
}
}
}
if (i1 >= 0 && i2 >= 0) {
const new_trace = new Trace(i1, i2);
new_trace.draw();
trace_list.push(new_trace);
i = lone_pad_list.indexOf(i1);
if (i > -1) { lone_pad_list.splice(i, 1); }
i = lone_pad_list.indexOf(i2);
if (i > -1) { lone_pad_list.splice(i, 1); }
i = used_pad_list.indexOf(i1);
if (i == -1) { used_pad_list.push(i1); }
i = used_pad_list.indexOf(i2);
if (i == -1) { used_pad_list.push(i2); }
}
}
function findClosest(i1) {
var i2 = 0;
var min_dist = distance(i1, i2);
for (var i=1; i<full_pad_list.length; i++) {
if (i == i1) continue;
var dist = distance(i1, i);
if (min_dist > dist) {
min_dist = dist;
i2 = i;
}
}
return i2;
}
function init_traces() {
trace_list = [];
lone_pad_list = Array.from({length: full_pad_list.length}, (_,id) => id);
used_pad_list = [];
}
function addForbiddenTraces(pad_list) {
for (var i=0; i<pad_list.length; i++) {
for (var j=i+1; j<pad_list.length; j++) {
forbidden_trace_list[trace_key(pad_list[i], pad_list[j])] = 1;
}
}
}
function trace_key(i1, i2) {
return Math.min(i1, i2) + Math.max(i1, i2) * pad_count;
}
function newComponent() {
return [ [ (rng.nextFloat() - 0.5) * 200, (rng.nextFloat() - 0.5) * 200 ] ];
// Proof of concept for a potential future version
const list = [];
const rotate = rng.nextFloat() < 0.5;
const components = [
// Chance, rows, cols
[ 1, 1, 1 ],
[ 0, 2, 1 ],
[ 0, 2, 2 ],
[ 0, 2, 6 ]
];
var total_chance = 0;
components.forEach(c => total_chance += c[0]);
var chance = (rng.nextFloat() * total_chance) | 0;
components.forEach(c => {
const pitch = pad_size * 3;
if (chance >= 0 && chance < c[0]) {
var x = (rng.nextFloat() - 0.5) * 200;
var y = (rng.nextFloat() - 0.5) * 200;
for (var row=0; row<c[1]; row++) {
const oy = row * pitch;
for (var col=0; col<c[2]; col++) {
const ox = col * pitch;
if (rotate) {
list.push([y + oy, x + ox]);
} else {
list.push([x + ox, y + oy]);
}
}
}
chance = -1;
}
chance -= c[0];
});
return list;
}
function init_pads() {
full_pad_list = [];
forbidden_trace_list = {};
var attempts = pad_count * 10;
while (attempts-- > 0 && full_pad_list.length < pad_count) {
const newly_added = [];
const pad_list = newComponent();
for (var pi=0; pi<pad_list.length && full_pad_list.length < pad_count; pi++) {
var x = pad_list[pi][0];
var y = pad_list[pi][1];
x = Math.round(x / (pad_size * alignment * 2)) * pad_size * alignment * 2;
y = Math.round(y / (pad_size * alignment * 2)) * pad_size * alignment * 2;
if (Math.abs(x) > 100 - pad_size) continue;
if (Math.abs(y) > 100 - pad_size) continue;
if (Math.hypot(x, y) > 100) continue;
const new_p = new Pad(x, y);
var collision = false;
for (var i=0; i<full_pad_list.length && !collision; i++) {
const dist = distance_p(full_pad_list[i], new_p);
if (dist < pad_size * (clearance + 1) * 2) collision = true;
}
if (collision) continue;
full_pad_list.push(new_p);
newly_added.push(full_pad_list.length - 1);
}
addForbiddenTraces(newly_added);
}
}
function distance(i1, i2) {
return distance_p(full_pad_list[i1], full_pad_list[i2]);
}
function distance_p(p1, p2) {
return Math.hypot(p1.x - p2.x, p1.y - p2.y);
}
class Pad {
constructor(x, y) {
this.x = x;
this.y = y;
this.closest_index = -1;
}
draw() {
if (thick) {
const min_radius = show_pads ? hole_size : 0;
const max_radius = show_pads ? pad_size : trace_size;
const rstep = 0.1;
const astep = Math.PI * 2 / 20;
turtle.jump(this.x + max_radius, this.y);
for (var r = max_radius; r >= min_radius; r -= rstep) {
for (var a = astep; a <= Math.PI * 2; a += astep) {
turtle.goto(this.x + r * Math.cos(a), this.y + r * Math.sin(a));
}
}
} else if (show_pads) {
turtle.jump(this.x, this.y - hole_size);
turtle.circle(hole_size);
// turtle.jump(this.x, this.y - pad_size);
// turtle.circle(pad_size);
}
}
}
function rotX(x, y, a) { return Math.cos(a) * x - Math.sin(a) * y; }
function rotY(x, y, a) { return Math.sin(a) * x + Math.cos(a) * y; }
class Trace {
constructor(i1, i2) {
this.i1 = i1;
this.i2 = i2;
}
length() {
return distance(this.i1, this.i2);
}
split() {
const list = [];
const dx = full_pad_list[this.i2].x - full_pad_list[this.i1].x;
const dy = full_pad_list[this.i2].y - full_pad_list[this.i1].y;
const EPS = 0.001;
if ((Math.abs(dx) > EPS) && (Math.abs(dy) > EPS) && (Math.abs(dx-dy) > EPS))
{
const x1 = full_pad_list[this.i1].x;
const y1 = full_pad_list[this.i1].y;
const x3 = full_pad_list[this.i2].x;
const y3 = full_pad_list[this.i2].y;
const adx = Math.abs(dx);
const ady = Math.abs(dy);
const dir = Math.sign(dx) * Math.sign(dy);
const x2 = (adx > ady) ? (x1 + dy * dir) : (x3);
const y2 = (ady > adx) ? (y1 + dx * dir) : (y3);
if (Math.hypot(x1-x2, y1-y2) > hole_size && Math.hypot(x2-x3, y2-y3) > hole_size) {
list.push([x1, y1, x2, y2]);
list.push([x2, y2, x3, y3]);
}
}
if (list.length < 1) {
list.push([full_pad_list[this.i1].x, full_pad_list[this.i1].y, full_pad_list[this.i2].x, full_pad_list[this.i2].y]);
}
return list;
}
draw() {
const lines = this.split();
const mint = thick ? -trace_size : 0;
const maxt = thick ? trace_size : 0;
const tstep = trace_size * 0.1;
for (var t=mint; t<=maxt + tstep/2; t+=tstep) {
turtle.up();
for (var i=0; i<lines.length; i++) {
const len = Math.hypot(lines[i][0]-lines[i][2], lines[i][1]-lines[i][3]);
const EPS = 0.0001;
if (len < EPS) continue;
const factor = (show_pads && len > 0.001) ? (len - hole_size) / len : 1;
const x1 = (i==0) ? (lines[i][2] + (lines[i][0] - lines[i][2]) * factor) : lines[i][0];
const y1 = (i==0) ? (lines[i][3] + (lines[i][1] - lines[i][3]) * factor) : lines[i][1];
const x2 = (i==lines.length-1) ? (lines[i][0] + (lines[i][2] - lines[i][0]) * factor) : lines[i][2];
const y2 = (i==lines.length-1) ? (lines[i][1] + (lines[i][3] - lines[i][1]) * factor) : lines[i][3];
const len2 = Math.hypot(x1 - x2, y1 - y2);
if (len2 < EPS) continue;
const a = -Math.PI / 2;
const rx = rotX((x1 - x2) / len2, (y1 - y2) / len2, a);
const ry = rotY((x1 - x2) / len2, (y1 - y2) / len2, a);
turtle.goto(x1 + rx * t, y1 + ry * t); turtle.down();
turtle.goto(x2 + rx * t, y2 + ry * t);
}
}
}
sameAs(e) {
return (this.i1 == e.i1 && this.i2 == e.i2) || (this.i1 == e.i2 && this.i2 == e.i1);
}
}
// Random with seed
function RNG(t){return new class{constructor(t){this.m=2147483648,this.a=1103515245,this.c=12345,this.state=t||Math.floor(Math.random()*(this.m-1))}nextFloat(){return this.state=(this.a*this.state+this.c)%this.m,this.state/(this.m-1)}}(t)}