Grid of layered diamonds
inspired by twitter.com/floris_d…049871368192/photo/1
Log in to post a comment.
Canvas.setpenopacity(0.85); const turtle = new Turtle(); const polygons = new Polygons(); const gridType = 2; // min=1, max=6, step=1 const grid = 9; // min=5, max=35, step=2 const scale = 175 / grid; const diamondWidth = 75; // min=5, max=100, step=1 const diamondHeight = 50; // min=5, max=100, step=1 const sizeX = diamondWidth / grid; const sizeY = diamondHeight / grid; const layers = 6; // min=1, max=40, step=1 const layerDistance = 0.5; // min=0.1, max=1.75, step=0.001 const hatchType = 1; // min=0, max=4, step=1 const minHatching = 1.0; const maxHatching = 0.275; const useOutline = 1; // min=0, max=1, step=1 // The walk function will be called until it returns false. function walk(i) { let gridX = (i % grid) - (grid/2|0); let gridY = grid - (i/grid|0) - (grid/2|0); gridY -= 0.5; if (gridX % 2 == 0) { } else { gridY -= 0.5; } const x = gridX * scale; const y = gridY * scale; let totalLayers = layers; switch (gridType) { case 1: totalLayers = layers; break; case 2: totalLayers = (1 - Math.sqrt( (x)** 2 + (y)**2) / 100) * layers | 0; break; case 3: totalLayers = (1 - Math.sqrt( (x+y)** 2 + (y+x)**2) / 100) * layers | 0; break; case 4: totalLayers = lerp(1, layers, (Math.cos(gridY * 5 + gridX * 10)/2 + 0.5) ) | 0; break; case 5: totalLayers = lerp(1, layers, (Math.sin(gridX + gridY*5)/2 + 0.5) * (Math.sin(gridY + gridX*5)/2 + 0.5) ) | 0; break; case 6: totalLayers = lerp(1, layers, Math.random() ) | 0; break; } for (let idx=0; idx<totalLayers; idx++) { const t = idx / (totalLayers-1); let id = totalLayers - idx; const offset = [0, id * sizeY * -layerDistance]; const rect = polygons.create(); rect.addPoints(add2([ x - sizeX, y + 0 ], offset)); rect.addPoints(add2([ x - 0, y - sizeY ], offset)); rect.addPoints(add2([ x + sizeX, y + 0 ], offset)); rect.addPoints(add2([ x + 0, y + sizeY ], offset)); if (useOutline) rect.addOutline(); if (hatchType) { if (hatchType === 1 && t > 0) { if (t > 0.75) rect.addHatching(Math.atan2(diamondHeight, diamondWidth), 0.5) if (t >= 0.5) rect.addHatching(Math.PI/2, 0.75 ) if (t > 0) rect.addHatching(0, 0.75 ) } else if (hatchType == 2 && t > 0) { rect.addHatching(Math.atan2(diamondHeight, diamondWidth * (idx % 2 ==0 ? 1 : -1)), lerp(minHatching, maxHatching, t)) } else if (hatchType === 3) { if (Math.random() > 0.5) rect.addHatching(Math.atan2(diamondHeight, diamondWidth), 0.75); if (Math.random() > 0.5) rect.addHatching(Math.atan2(diamondHeight, -diamondWidth), 0.75); if (Math.random() > 0.5) rect.addHatching(0, 0.75); if (Math.random() > 0.5) rect.addHatching(Math.PI/2, 0.75); } else if (hatchType === 4) { if (Math.random() > 0.5) rect.addHatching(Math.random() * Math.PI, lerp(minHatching * 0.5, maxHatching, t)); } } polygons.draw(turtle, rect); } return i < grid*grid-1; } const lerp=(a,b,t)=>a+(b-a)*t; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }