Triangulation 🔺

Delaunay triangulation with some hatching
#triangulation

Log in to post a comment.

const seed = 250; // min=1, max=500, step=1
const size = 100; // min=50, max=150, step=5
const amount = 200; // min=10, max=1000, step=5
const hatching = 0.5; // min=0.0, max=1.0, step=0.05
const outlines = 0.5; // min=0.0, max=1.0, step=0.05
const density = 0.85; // min=0, max=1, step=0.05
const uniform = 0.8; // min=0, max=1, step=0.05
const destroyed = 0.1; // min=0, max=1, step=0.05
const shape = 2; // min=0, max=3, step=1 (Raw, Square, Rounded, Round)
const turtle = new Turtle();
const polygons = new Polygons();
const random = new Random(seed);
const delaunay = new Delaunay();

const sizeSqrt = Math.ceil(Math.sqrt(amount));
function walk(step = 0) {
    if (step === 0) {
        let input = [...Array(amount).keys()].map(p => [
            -size + ((p % sizeSqrt) / sizeSqrt) * size * 2, 
            -size + ((p / sizeSqrt | 0) / sizeSqrt) * size * 2,
        ]);
        random.shuffle(input);
        
        input = input.filter(p => random.next() > destroyed / 2);
        input = input.filter(p => random.next() > destroyed / 2);
        input = input.filter(p => random.next() > destroyed / 2);
        input = input.filter(p => random.next() > destroyed / 2);
        input = input.filter(p => random.next() > destroyed / 2);
       
        if (shape == 1) {
            input.unshift([-size,-size]);
            input.unshift([size,-size]);
            input.unshift([size,size]);
            input.unshift([-size,size]);
        } else if (shape == 2 || shape == 3) {
            input = input.filter(p => p[0] * p[0] + p[1] * p[1] < (size * size));
            const total = Math.max(amount - input.length, 20);
            if (shape == 3) for(let i=0;i<total;i++) {
                const a = i/total*Math.PI*2;
                input.unshift([Math.sin(a)*size,Math.cos(a)*size]);
            }
        }
        
        const spread = (1 - uniform) * size / 2;
        input.forEach(p => {
            
            const r =  (shape == 0) ? random.next() : Math.max(0, Math.min(1, 1 - (p[0] * p[0] + p[1] * p[1]) / (size * size)))
            p[0] += random.range(-spread, spread) * r;
            p[1] += random.range(-spread, spread) * r;
        })
        random.shuffle(input);
        delaunay.compute(input);
    }
    
    let idx = step * 3;
    let { indices, points } = delaunay;
    
	let p0 = points[indices[idx + 0]];
	let p1 = points[indices[idx + 1]];
	let p2 = points[indices[idx + 2]];
	if (!p0 || !p1 || !p2) return false;
	
	const angle = Math.atan2(p0[1]-p1[1]-p2[1], p0[0]-p1[0]-p2[0]);
	if (outlines === 1 && hatching === 0) {
	    if (random.next() < density) {
    	    turtle.jump(p0);
    	    turtle.goto(p1);
    	    turtle.goto(p2);
    	    turtle.goto(p0);
	    }
	} else {
    	const triangle = polygons.create();
    	triangle.addPoints(p0, p1, p2);
    	if (random.next() < outlines) triangle.addOutline();
    	if (random.next() < hatching) triangle.addHatching(angle, (0.25 + (idx / indices.length) * 1.5) *  lerp(1.0, 0.75, Math.min(amount, 1000) / 1000));
    	if (random.next() < density) polygons.draw(turtle, triangle);
	}
    return true;
}

function add2(p, v) { return [p[0] + v[0], p[1] + v[1]]; }
function scl2(p, x, y = x) { return [p[0] * x, p[1] * y]; }
function lerp(a,b,t) { return a + (b-a) * t; }

function Delaunay() {
    // Ported from some output of my old Haxe project
    class Delaunay {
        constructor() { }
    	compute(points) {
    	    this.points = points;
    	    let t = 0, n=0, c=0;
    		let s = points.length;
    		if (s < 3) return null;
    		let e = 1e9;
    		points.push([0, -e]);
    		points.push([e, e]);
    		points.push([-e, e]);
    		this.indices = [points.length - 3, points.length - 2, points.length - 1];
    		this.circles = [0, 0, e];
    		for (let h = [], t = 0, n = 0, c = 0, r = 0; r < s; ) {
    			let l = r++, p = 0;
    			if (0 < this.indices.length)
    				for (;;) {
						let d = points[l];
						let a = this.circles[p] - d[0];
						let o = this.circles[p + 1] - d[1];
						let f = this.circles[p + 2] > a * a + o * o;
    					if (
    						(f &&
    							((t = this.indices[p]),
    							(n = this.indices[p + 1]),
    							(c = this.indices[p + 2]),
    							h.push(t),
    							h.push(n),
    							h.push(n),
    							h.push(c),
    							h.push(c),
    							h.push(t),
    							this.indices.splice(p, 3),
    							this.circles.splice(p, 3),
    							(p -= 3)),
    						!((p += 3) < this.indices.length))
    					)
    						break;
    				}
    			let u = 0;
    			if (0 < h.length)
    				for (;;) {
    					let g = u + 2;
    					if (g < h.length)
    						for (;;) {
    							if (
    								(h[u] == h[g] && h[u + 1] == h[g + 1]) ||
    								(h[u + 1] == h[g] && h[u] == h[g + 1])
    							) {
    								if ((h.splice(g, 2), h.splice(u, 2), (g -= 2), (u -= 2) < 0))
    									break;
    								if (g < 0) break;
    							}
    							if (!((g += 2) < h.length)) break;
    						}
    					if (!((u += 2) < h.length)) break;
    				}
    			let v = 0;
    			if (0 < h.length)
    				for (;;) {
    					this.indices.push(h[v]);
    					this.indices.push(h[v + 1]);
    					this.indices.push(l);
    					let x = points[h[v]],
    						y = points[h[v + 1]],
    						b = points[l],
    						k = y[0] - x[0],
    						T = y[1] - x[1],
    						m = b[0] - x[0],
    						j = b[1] - x[1],
    						q = k * (x[0] + y[0]) + T * (x[1] + y[1]),
    						w = m * (x[0] + b[0]) + j * (x[1] + b[1]),
    						z = 2 * (k * (b[1] - y[1]) - T * (b[0] - y[0])),
    						A = (j * q - T * w) / z;
    					this.circles.push(A);
    					let B = (k * w - m * q) / z;
    					if (
    						(this.circles.push(B),
    						(A -= x[0]),
    						(B -= x[1]),
    						this.circles.push(A * A + B * B),
    						!((v += 2) < h.length))
    					)
    						break;
    				}
    			for (; 0 != h.length; ) h.pop();
    		}
    		(t = points.length - 3), (n = points.length - 2), (c = points.length - 1);
    		let C = 0;
    		if (0 < this.indices.length)
    			for (;;) {
    				if (
    					this.indices[C] == t ||
    					this.indices[C] == n ||
    					this.indices[C] == c ||
    					this.indices[C + 1] == t ||
    					this.indices[C + 1] == n ||
    					this.indices[C + 1] == c ||
    					this.indices[C + 2] == t ||
    					this.indices[C + 2] == n ||
    					this.indices[C + 2] == c
    				) {
    					if (
    						(this.indices.splice(C, 3),
    						(C -= 3),
    						(C += 3) < this.indices.length)
    					)
    						continue;
    					break;
    				}
    				if (!((C += 3) < this.indices.length)) break;
    			}
    		return points.pop(), points.pop(), points.pop(), this.indices;
    	}
    }
    return new Delaunay();
}



// Seeded random - Mulberry32
function Random(seed) {
    class Random {
        constructor(seed) { 
            this.seed = seed;
        }
        next() { 
            var t = this.seed += 0x6D2B79F5;
            t = Math.imul(t ^ t >>> 15, t | 1);
            t ^= t + Math.imul(t ^ t >>> 7, t | 61);
            return ((t ^ t >>> 14) >>> 0) / 4294967296;
        }
        range(from, to) {
            var r = this.next();
            return from + (to - from) * r;
        }
        either(a = 0, b = 1, chance = 0.5) {
            return this.next() > chance ? a : b;
        }
        shuffle(arr) {
            for (let i = arr.length - 1; i > 0; i--) {
                const j = Math.floor(this.next() * (i + 1));
                [arr[i], arr[j]] = [arr[j], arr[i]];
            }
            return arr;
        }
    }
    return new Random(seed);
}


////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////

function Polygons() {
	const polygonList = [];
	const Polygon = class {
		constructor() {
			this.cp = [];       // clip path: array of [x,y] pairs
			this.dp = [];       // 2d lines [x0,y0],[x1,y1] to draw
			this.aabb = [];     // AABB bounding box
		}
		addPoints(...points) {
		    // add point to clip path and update bounding box
		    let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5;
			(this.cp = [...this.cp, ...points]).forEach( p => {
				xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]);
				ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]);
			});
		    this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2];
		}
		addSegments(...points) {
		    // add segments (each a pair of points)
		    points.forEach(p => this.dp.push(p));
		}
		addOutline() {
			for (let i = 0, l = this.cp.length; i < l; i++) {
				this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
			}
		}
		draw(t) {
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				t.jump(this.dp[i]), t.goto(this.dp[i + 1]);
			}
		}
		addHatching(a, d) {
			const tp = new Polygon();
			tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
			const dx = Math.sin(a) * d,   dy = Math.cos(a) * d;
			const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
			for (let i = 0.5; i < 150 / d; i++) {
				tp.dp.push([dx * i + cy,   dy * i - cx], [dx * i - cy,   dy * i + cx]);
				tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
			}
			tp.boolean(this, false);
			this.dp = [...this.dp, ...tp.dp];
		}
		inside(p) {
			let int = 0; // find number of i ntersection points from p to far away
			for (let i = 0, l = this.cp.length; i < l; i++) {
				if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) {
					int++;
				}
			}
			return int & 1; // if even your outside
		}
		boolean(p, diff = true) {
		    // bouding box optimization by ge1doot.
		    if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 &&
				Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0;
				
			// polygon diff algorithm (narrow phase)
			const ndp = [];
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const ls0 = this.dp[i];
				const ls1 = this.dp[i + 1];
				// find all intersections with clip path
				const int = [];
				for (let j = 0, cl = p.cp.length; j < cl; j++) {
					const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]);
					if (pint !== false) {
						int.push(pint);
					}
				}
				if (int.length === 0) {
					// 0 intersections, inside or outside?
					if (diff === !p.inside(ls0)) {
						ndp.push(ls0, ls1);
					}
				} else {
					int.push(ls0, ls1);
					// order intersection points on line ls.p1 to ls.p2
					const cmpx = ls1[0] - ls0[0];
					const cmpy = ls1[1] - ls0[1];
					int.sort( (a,b) =>  (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - 
					                    (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy);
					 
					for (let j = 0; j < int.length - 1; j++) {
						if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) {
							if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) {
								ndp.push(int[j], int[j+1]);
							}
						}
					}
				}
			}
			return (this.dp = ndp).length > 0;
		}
		//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
		segment_intersect(l1p1, l1p2, l2p1, l2p2) {
			const d   = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
			if (d === 0) return false;
			const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
			const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
			const ua = n_a / d;
			const ub = n_b / d;
			if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
				return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])];
			}
			return false;
		}
	};
	return {
		list: () => polygonList,
		create: () => new Polygon(),
		draw: (turtle, p, addToVisList=true) => {
			for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++);
			p.draw(turtle);
			if (addToVisList) polygonList.push(p);
		}
	};
}