A visualisation of the distance to a Julia set.
iquilezles.org/articles/distancefractals/
en.wikipedia.org/wiki/julia_set
#fractal #juliaset
Log in to post a comment.
// Smooth Julia set. Created by Reinder Nijhoff 2022
// @reindernijhoff
//
// https://turtletoy.net/turtle/fcdf3cf8aa
//
Canvas.setpenopacity(.6);
const turtle = new Turtle();
turtle.traveled = 0;
turtle.direction = 1;
let cr = -0.54; // min=-1, max=1, step=0.01
let ci = -0.54; // min=-1, max=1, step=0.01
const radius = 1.5; // min=0.1, max=5, step=0.01
const minRadius = 0.0152; // min=0.01, max=0.1, step=0.01
const maxPathLength = 25; // min=1, max=300, step=0.1
const maxIterations = 30; // min = 1, max = 100, step = 1
const maxTries = 90;
const m_scale = 55; /// min = 10, max = 10000, step = 0.01
const grid = new PoissonDiscGrid(radius);
function juliaset(x, y) {
let zr = x;
let zi = y;
let ld2 = 1.0;
let lz2 = zr*zr + zi*zi;
for (let i=0; i<maxIterations; i++) {
[zr, zi] = [zr * zr - zi * zi + cr, 2 * zr * zi + ci];
ld2 *= 4.0*lz2;
lz2 = zr*zr + zi*zi;
if (lz2 >= maxIterations) break;
}
const d = Math.sqrt(lz2/ld2)*Math.log(lz2);
return Math.min(Math.max(0, Math.sqrt(d)), 1e8) / 2;
}
function get_image_intensity(x,y) {
var center_x = x;
var center_y = y;
const m_x = (center_x) / m_scale;
const m_y = (center_y) / m_scale;
return juliaset(m_x, m_y);
}
function curlNoiseM(x, y) {
const eps = 0.01;
const dx = (get_image_intensity(x, y + eps) - get_image_intensity(x, y - eps))/(2 * eps);
const dy = (get_image_intensity(x + eps, y) - get_image_intensity(x - eps, y))/(2 * eps);
const l = Math.hypot(dx, dy) / radius * 10;
const c = [dx / l, -dy / l];
return c;
}
function getRadius(p2) {
const l = 1 - get_image_intensity(p2[0], p2[1]);
return (minRadius * l + radius * (1-l)) / 2;
}
function walk(i) {
const p = turtle.pos();
const curl = curlNoiseM(p[0], p[1]);
const dest = [p[0]+curl[0]*turtle.direction, p[1]+curl[1]*turtle.direction];
dest[2] = getRadius(dest);
if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && grid.insert(dest)) {
turtle.goto(dest);
turtle.traveled += Math.hypot(curl[0], curl[1]);
} else {
turtle.traveled = 0;
turtle.direction = Math.random() > .5 ? 1 : -1;
let r, i = 0;
do {
r =[Math.random()*200-100, Math.random()*200-100];
r[2] = getRadius(r);
i ++;
} while(!grid.insert(r) && i < maxTries);
if (i >= maxTries) {
return false;
}
turtle.jump(r);
}
return true;
}
////////////////////////////////////////////////////////////////
// Poisson-Disc utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/b5510898dc
////////////////////////////////////////////////////////////////
function PoissonDiscGrid(radius) {
class PoissonDiscGrid {
constructor(radius) {
this.cellSize = 1/Math.sqrt(2)/radius;
this.cells = [];
this.queue = [];
}
insert(p) {
const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0;
for (let xi = x-1; xi<=x+1; xi++) {
for (let yi = y-1; yi<=y+1; yi++) {
const ps = this.cell(xi,yi);
for (let i=0; i<ps.length; i++) {
if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < (ps[i][2]+p[2])**2) {
return false;
}
}
}
}
this.queue.push([p, x, y]);
if (this.queue.length > 10) {
const d = this.queue.shift();
this.cell(d[1], d[2]).push(d[0]);
}
return true;
}
cell(x,y) {
const c = this.cells;
return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[];
}
}
return new PoissonDiscGrid(radius);
}