A visualisation of the distance to a Julia set.
iquilezles.org/articles/distancefractals/
en.wikipedia.org/wiki/julia_set
#fractal #juliaset
Log in to post a comment.
// Smooth Julia set. Created by Reinder Nijhoff 2022 // @reindernijhoff // // https://turtletoy.net/turtle/fcdf3cf8aa // Canvas.setpenopacity(.6); const turtle = new Turtle(); turtle.traveled = 0; turtle.direction = 1; let cr = -0.54; // min=-1, max=1, step=0.01 let ci = -0.54; // min=-1, max=1, step=0.01 const radius = 1.5; // min=0.1, max=5, step=0.01 const minRadius = 0.0152; // min=0.01, max=0.1, step=0.01 const maxPathLength = 25; // min=1, max=300, step=0.1 const maxIterations = 30; // min = 1, max = 100, step = 1 const maxTries = 90; const m_scale = 55; /// min = 10, max = 10000, step = 0.01 const grid = new PoissonDiscGrid(radius); function juliaset(x, y) { let zr = x; let zi = y; let ld2 = 1.0; let lz2 = zr*zr + zi*zi; for (let i=0; i<maxIterations; i++) { [zr, zi] = [zr * zr - zi * zi + cr, 2 * zr * zi + ci]; ld2 *= 4.0*lz2; lz2 = zr*zr + zi*zi; if (lz2 >= maxIterations) break; } const d = Math.sqrt(lz2/ld2)*Math.log(lz2); return Math.min(Math.max(0, Math.sqrt(d)), 1e8) / 2; } function get_image_intensity(x,y) { var center_x = x; var center_y = y; const m_x = (center_x) / m_scale; const m_y = (center_y) / m_scale; return juliaset(m_x, m_y); } function curlNoiseM(x, y) { const eps = 0.01; const dx = (get_image_intensity(x, y + eps) - get_image_intensity(x, y - eps))/(2 * eps); const dy = (get_image_intensity(x + eps, y) - get_image_intensity(x - eps, y))/(2 * eps); const l = Math.hypot(dx, dy) / radius * 10; const c = [dx / l, -dy / l]; return c; } function getRadius(p2) { const l = 1 - get_image_intensity(p2[0], p2[1]); return (minRadius * l + radius * (1-l)) / 2; } function walk(i) { const p = turtle.pos(); const curl = curlNoiseM(p[0], p[1]); const dest = [p[0]+curl[0]*turtle.direction, p[1]+curl[1]*turtle.direction]; dest[2] = getRadius(dest); if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && grid.insert(dest)) { turtle.goto(dest); turtle.traveled += Math.hypot(curl[0], curl[1]); } else { turtle.traveled = 0; turtle.direction = Math.random() > .5 ? 1 : -1; let r, i = 0; do { r =[Math.random()*200-100, Math.random()*200-100]; r[2] = getRadius(r); i ++; } while(!grid.insert(r) && i < maxTries); if (i >= maxTries) { return false; } turtle.jump(r); } return true; } //////////////////////////////////////////////////////////////// // Poisson-Disc utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/b5510898dc //////////////////////////////////////////////////////////////// function PoissonDiscGrid(radius) { class PoissonDiscGrid { constructor(radius) { this.cellSize = 1/Math.sqrt(2)/radius; this.cells = []; this.queue = []; } insert(p) { const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0; for (let xi = x-1; xi<=x+1; xi++) { for (let yi = y-1; yi<=y+1; yi++) { const ps = this.cell(xi,yi); for (let i=0; i<ps.length; i++) { if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < (ps[i][2]+p[2])**2) { return false; } } } } this.queue.push([p, x, y]); if (this.queue.length > 10) { const d = this.queue.shift(); this.cell(d[1], d[2]).push(d[0]); } return true; } cell(x,y) { const c = this.cells; return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[]; } } return new PoissonDiscGrid(radius); }