Raytraced sphere visualised using the 'curl noise' from Curl Noise
#raytracer #pixels #rays #curl #noise
Log in to post a comment.
// Raytraced sphere #5. Created by Reinder Nijhoff 2021
// @reindernijhoff
//
// https://turtletoy.net/turtle/2696d19370
//
// Forked from "Raytraced sphere #4" by reinder
// https://turtletoy.net/turtle/121df29c5c
Canvas.setpenopacity(0.7);
const radius = 1; // min=0.1, max=5, step=0.01
const minRadius = 0.1; // min=0.01, max=1, step=0.01
const maxPathLength = 50; // min=1, max=100, step=0.1
const frequency = 1.5; //min=.1, max=10, step=.01
const curlStrength = 0.05; // min=0.001, max=1, step=0.001
const seed = 69; // min=1, max=100, step=1
const maxTries = 75;
const grid = new PoissonDiscGrid(radius);
const noise = new SimplexNoise(seed);
const turtle = new Turtle();
turtle.traveled = 0;
turtle.direction = 1;
const canvas_size = 95;
const light_position = [-2,3,-4];
const ro = [0,0,-3.5];
const sphere_pos = [-.2,0,0];
function fbm(x, y) {
x *= frequency / 100;
y *= frequency / 100;
let f = 1., v = 0.;
for (let i=0; i<3; i++) {
v += noise.noise2D([x * f, y * f]) / f;
f *= 2; x += 32;
}
return v;
}
function curlNoiseM(x, y) {
const eps = 0.01;
let dx = (fbm(x, y + eps) - fbm(x, y - eps))/(2 * eps) * curlStrength;
let dy = (fbm(x + eps, y) - fbm(x - eps, y))/(2 * eps) * curlStrength;
dx += (get_image_intensity(x, y + eps) - get_image_intensity(x, y - eps))/(2 * eps);
dy += (get_image_intensity(x + eps, y) - get_image_intensity(x - eps, y))/(2 * eps);
const l = Math.hypot(dx, dy) * 10;
const c = [dx / l, -dy / l];
return c;
}
function getRadius(p2) {
const l = get_image_intensity(p2[0], p2[1]);
return (minRadius * l + radius * (1-l)) / 2;
}
function walk(i) {
const p = turtle.pos();
const curl = curlNoiseM(p[0], p[1]);
const dest = [p[0]+curl[0]*turtle.direction, p[1]+curl[1]*turtle.direction];
dest[2] = getRadius(dest);
if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && grid.insert(dest)) {
turtle.goto(dest);
turtle.traveled += Math.hypot(curl[0], curl[1]);
} else {
turtle.traveled = 0;
turtle.direction = Math.sign(Math.random()-.5);
let r, i = 0;
do {
r =[Math.random()*200-100, Math.random()*200-100];
r[2] = getRadius(r);
i ++;
} while(!grid.insert(r) && i < maxTries);
if (i >= maxTries) {
return false;
}
turtle.jump(r);
}
return true;
}
function get_image_intensity(x,y) {
x /= canvas_size;
y /= canvas_size;
const rd = normalize3([x,-y,2]);
let normal;
let light = 0;
let hit;
let plane_hit = false;
let dist = intersect_sphere(ro, rd, sphere_pos, 1);
if (dist > 0) {
hit = add3(ro, scale3(rd, dist));
normal = normalize3(hit);
} else {
dist = 10000;
}
if (rd[1] < 0) {
const plane_dist = -1/rd[1];
if (plane_dist < dist) {
dist = plane_dist;
plane_hit = true;
hit = add3(ro, scale3(rd, dist));
normal = [0,1,0];
}
}
if (dist > 0 && dist < 10000) {
let vec_to_light = sub3(hit, light_position);
const light_dist_sqr = dot3(vec_to_light, vec_to_light);
vec_to_light = scale3(vec_to_light, -1/Math.sqrt(light_dist_sqr));
let light = dot3(normal, vec_to_light);
if (!plane_hit) {
light = Math.max(0, .3 + .7 * light) ** 2;
}
light *= 30 / light_dist_sqr;
// shadow ?
if (plane_hit && intersect_sphere(hit, vec_to_light, sphere_pos, 1) > 0) {
light *= 0.01;
}
return Math.exp(-2*Math.max(0,light));
} else {
return 1;
}
}
const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b];
const len3=(a)=>Math.sqrt(dot3(a,a));
const normalize3=(a)=>scale3(a,1/len3(a));
const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]];
const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]];
const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2];
function intersect_sphere(ro, rd, center, radius) {
const oc = sub3(ro, center);
const b = dot3( oc, rd );
const c = dot3( oc, oc ) - radius * radius;
const h = b*b - c;
if( h<0 ) return -1;
return -b - Math.sqrt( h );
}
////////////////////////////////////////////////////////////////
// Poisson-Disc utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/b5510898dc
////////////////////////////////////////////////////////////////
function PoissonDiscGrid(radius) {
class PoissonDiscGrid {
constructor(radius) {
this.cellSize = 1/Math.sqrt(2)/radius;
this.cells = [];
this.queue = [];
}
insert(p) {
const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0;
for (let xi = x-1; xi<=x+1; xi++) {
for (let yi = y-1; yi<=y+1; yi++) {
const ps = this.cell(xi,yi);
for (let i=0; i<ps.length; i++) {
if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < (ps[i][2]+p[2])**2) {
return false;
}
}
}
}
this.queue.push([p, x, y]);
if (this.queue.length > (10 * radius + 1)|0) {
const d = this.queue.shift();
this.cell(d[1], d[2]).push(d[0]);
}
return true;
}
cell(x,y) {
const c = this.cells;
return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[];
}
}
return new PoissonDiscGrid(radius);
}
////////////////////////////////////////////////////////////////
// Simplex Noise utility code. Created by Reinder Nijhoff 2020
// https://turtletoy.net/turtle/6e4e06d42e
// Based on: http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
////////////////////////////////////////////////////////////////
function SimplexNoise(seed = 1) {
const grad = [ [1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0],
[1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1],
[0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1] ];
const perm = new Uint8Array(512);
const F2 = (Math.sqrt(3) - 1) / 2, F3 = 1/3;
const G2 = (3 - Math.sqrt(3)) / 6, G3 = 1/6;
const dot2 = (a, b) => a[0] * b[0] + a[1] * b[1];
const sub2 = (a, b) => [a[0] - b[0], a[1] - b[1]];
const dot3 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
const sub3 = (a, b) => [a[0] - b[0], a[1] - b[1], a[2] - b[2]];
class SimplexNoise {
constructor(seed = 1) {
for (let i = 0; i < 512; i++) {
perm[i] = i & 255;
}
for (let i = 0; i < 255; i++) {
const r = (seed = this.hash(i+seed)) % (256 - i) + i;
const swp = perm[i];
perm[i + 256] = perm[i] = perm[r];
perm[r + 256] = perm[r] = swp;
}
}
noise2D(p) {
const s = dot2(p, [F2, F2]);
const c = [Math.floor(p[0] + s), Math.floor(p[1] + s)];
const i = c[0] & 255, j = c[1] & 255;
const t = dot2(c, [G2, G2]);
const p0 = sub2(p, sub2(c, [t, t]));
const o = p0[0] > p0[1] ? [1, 0] : [0, 1];
const p1 = sub2(sub2(p0, o), [-G2, -G2]);
const p2 = sub2(p0, [1-2*G2, 1-2*G2]);
let n = Math.max(0, 0.5-dot2(p0, p0))**4 * dot2(grad[perm[i+perm[j]] % 12], p0);
n += Math.max(0, 0.5-dot2(p1, p1))**4 * dot2(grad[perm[i+o[0]+perm[j+o[1]]] % 12], p1);
n += Math.max(0, 0.5-dot2(p2, p2))**4 * dot2(grad[perm[i+1+perm[j+1]] % 12], p2);
return 70 * n;
}
hash(i) {
i = 1103515245 * ((i >> 1) ^ i);
const h32 = 1103515245 * (i ^ (i>>3));
return h32 ^ (h32 >> 16);
}
}
return new SimplexNoise(seed);
}