Raytraced sphere visualised using the 'curl noise' from Curl Noise
#raytracer #pixels #rays #curl #noise
Log in to post a comment.
// Raytraced sphere #5. Created by Reinder Nijhoff 2021 // @reindernijhoff // // https://turtletoy.net/turtle/2696d19370 // // Forked from "Raytraced sphere #4" by reinder // https://turtletoy.net/turtle/121df29c5c Canvas.setpenopacity(0.7); const radius = 1; // min=0.1, max=5, step=0.01 const minRadius = 0.1; // min=0.01, max=1, step=0.01 const maxPathLength = 50; // min=1, max=100, step=0.1 const frequency = 1.5; //min=.1, max=10, step=.01 const curlStrength = 0.05; // min=0.001, max=1, step=0.001 const seed = 69; // min=1, max=100, step=1 const maxTries = 75; const grid = new PoissonDiscGrid(radius); const noise = new SimplexNoise(seed); const turtle = new Turtle(); turtle.traveled = 0; turtle.direction = 1; const canvas_size = 95; const light_position = [-2,3,-4]; const ro = [0,0,-3.5]; const sphere_pos = [-.2,0,0]; function fbm(x, y) { x *= frequency / 100; y *= frequency / 100; let f = 1., v = 0.; for (let i=0; i<3; i++) { v += noise.noise2D([x * f, y * f]) / f; f *= 2; x += 32; } return v; } function curlNoiseM(x, y) { const eps = 0.01; let dx = (fbm(x, y + eps) - fbm(x, y - eps))/(2 * eps) * curlStrength; let dy = (fbm(x + eps, y) - fbm(x - eps, y))/(2 * eps) * curlStrength; dx += (get_image_intensity(x, y + eps) - get_image_intensity(x, y - eps))/(2 * eps); dy += (get_image_intensity(x + eps, y) - get_image_intensity(x - eps, y))/(2 * eps); const l = Math.hypot(dx, dy) * 10; const c = [dx / l, -dy / l]; return c; } function getRadius(p2) { const l = get_image_intensity(p2[0], p2[1]); return (minRadius * l + radius * (1-l)) / 2; } function walk(i) { const p = turtle.pos(); const curl = curlNoiseM(p[0], p[1]); const dest = [p[0]+curl[0]*turtle.direction, p[1]+curl[1]*turtle.direction]; dest[2] = getRadius(dest); if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && grid.insert(dest)) { turtle.goto(dest); turtle.traveled += Math.hypot(curl[0], curl[1]); } else { turtle.traveled = 0; turtle.direction = Math.sign(Math.random()-.5); let r, i = 0; do { r =[Math.random()*200-100, Math.random()*200-100]; r[2] = getRadius(r); i ++; } while(!grid.insert(r) && i < maxTries); if (i >= maxTries) { return false; } turtle.jump(r); } return true; } function get_image_intensity(x,y) { x /= canvas_size; y /= canvas_size; const rd = normalize3([x,-y,2]); let normal; let light = 0; let hit; let plane_hit = false; let dist = intersect_sphere(ro, rd, sphere_pos, 1); if (dist > 0) { hit = add3(ro, scale3(rd, dist)); normal = normalize3(hit); } else { dist = 10000; } if (rd[1] < 0) { const plane_dist = -1/rd[1]; if (plane_dist < dist) { dist = plane_dist; plane_hit = true; hit = add3(ro, scale3(rd, dist)); normal = [0,1,0]; } } if (dist > 0 && dist < 10000) { let vec_to_light = sub3(hit, light_position); const light_dist_sqr = dot3(vec_to_light, vec_to_light); vec_to_light = scale3(vec_to_light, -1/Math.sqrt(light_dist_sqr)); let light = dot3(normal, vec_to_light); if (!plane_hit) { light = Math.max(0, .3 + .7 * light) ** 2; } light *= 30 / light_dist_sqr; // shadow ? if (plane_hit && intersect_sphere(hit, vec_to_light, sphere_pos, 1) > 0) { light *= 0.01; } return Math.exp(-2*Math.max(0,light)); } else { return 1; } } const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b]; const len3=(a)=>Math.sqrt(dot3(a,a)); const normalize3=(a)=>scale3(a,1/len3(a)); const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]]; const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]]; const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; function intersect_sphere(ro, rd, center, radius) { const oc = sub3(ro, center); const b = dot3( oc, rd ); const c = dot3( oc, oc ) - radius * radius; const h = b*b - c; if( h<0 ) return -1; return -b - Math.sqrt( h ); } //////////////////////////////////////////////////////////////// // Poisson-Disc utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/b5510898dc //////////////////////////////////////////////////////////////// function PoissonDiscGrid(radius) { class PoissonDiscGrid { constructor(radius) { this.cellSize = 1/Math.sqrt(2)/radius; this.cells = []; this.queue = []; } insert(p) { const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0; for (let xi = x-1; xi<=x+1; xi++) { for (let yi = y-1; yi<=y+1; yi++) { const ps = this.cell(xi,yi); for (let i=0; i<ps.length; i++) { if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < (ps[i][2]+p[2])**2) { return false; } } } } this.queue.push([p, x, y]); if (this.queue.length > (10 * radius + 1)|0) { const d = this.queue.shift(); this.cell(d[1], d[2]).push(d[0]); } return true; } cell(x,y) { const c = this.cells; return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[]; } } return new PoissonDiscGrid(radius); } //////////////////////////////////////////////////////////////// // Simplex Noise utility code. Created by Reinder Nijhoff 2020 // https://turtletoy.net/turtle/6e4e06d42e // Based on: http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf //////////////////////////////////////////////////////////////// function SimplexNoise(seed = 1) { const grad = [ [1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0], [1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1], [0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1] ]; const perm = new Uint8Array(512); const F2 = (Math.sqrt(3) - 1) / 2, F3 = 1/3; const G2 = (3 - Math.sqrt(3)) / 6, G3 = 1/6; const dot2 = (a, b) => a[0] * b[0] + a[1] * b[1]; const sub2 = (a, b) => [a[0] - b[0], a[1] - b[1]]; const dot3 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; const sub3 = (a, b) => [a[0] - b[0], a[1] - b[1], a[2] - b[2]]; class SimplexNoise { constructor(seed = 1) { for (let i = 0; i < 512; i++) { perm[i] = i & 255; } for (let i = 0; i < 255; i++) { const r = (seed = this.hash(i+seed)) % (256 - i) + i; const swp = perm[i]; perm[i + 256] = perm[i] = perm[r]; perm[r + 256] = perm[r] = swp; } } noise2D(p) { const s = dot2(p, [F2, F2]); const c = [Math.floor(p[0] + s), Math.floor(p[1] + s)]; const i = c[0] & 255, j = c[1] & 255; const t = dot2(c, [G2, G2]); const p0 = sub2(p, sub2(c, [t, t])); const o = p0[0] > p0[1] ? [1, 0] : [0, 1]; const p1 = sub2(sub2(p0, o), [-G2, -G2]); const p2 = sub2(p0, [1-2*G2, 1-2*G2]); let n = Math.max(0, 0.5-dot2(p0, p0))**4 * dot2(grad[perm[i+perm[j]] % 12], p0); n += Math.max(0, 0.5-dot2(p1, p1))**4 * dot2(grad[perm[i+o[0]+perm[j+o[1]]] % 12], p1); n += Math.max(0, 0.5-dot2(p2, p2))**4 * dot2(grad[perm[i+1+perm[j+1]] % 12], p2); return 70 * n; } hash(i) { i = 1103515245 * ((i >> 1) ^ i); const h32 = 1103515245 * (i ^ (i>>3)); return h32 ^ (h32 >> 16); } } return new SimplexNoise(seed); }