// You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); const polygons = Polygons(); // Global code will be evaluated once. const turtle = new Turtle(); turtle.penup(); const sun = (x, y, r, a, s) => { const p = polygons.create(); for (let a = 0; a < 2 * Math.PI; a += Math.PI / 36) { p.addPoints([x + r * Math.cos(a), y + r * Math.sin(a)]); } p.addOutline(); if (s) p.addHatching(a, s); polygons.draw(turtle, p); }; const mountains = ( h, a, s ) => { const p = polygons.create(); let ht = h; for (let i = -100; i <= 100; i += 1) { const d = Math.random() > 0.5 ? 1 : -1; ht += d * (Math.random() * Math.random() * (Math.random() > 0.8 ? 80 : 40)); if (ht > 90) ht = 90; if (ht < h - 60) ht += Math.random() * 40; p.addPoints([i, ht]); k++; hts += ht; } p.addPoints([100, 100]); p.addPoints([-100, 100]); if (s) p.addHatching(a, s); polygons.draw(turtle, p); }; let k = 0, hts = 0; mountains(90, 0, 0.5); mountains(60, Math.random() * 2 * Math.PI, 1); mountains(30, Math.random() * 2 * Math.PI, 2); mountains(0, Math.random() * 2 * Math.PI, 3); mountains(-10, Math.random() * 2 * Math.PI, 3); mountains(-30, Math.random() * 2 * Math.PI, 5); mountains(-50, Math.random() * 2 * Math.PI, 0.5); mountains(-60, Math.random() * 2 * Math.PI, 1); mountains(-70, Math.random() * 2 * Math.PI, 3); //sun(-35, hts / k - 50, 50, 0, 0.1); //////////////////////////////////////////////////////////////// // reinder's occlusion code parts from "Cubic space division #2" // Optimizations and code clean-up by ge1doot //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw this.aabb = []; // AABB bounding box } addPoints(...points) { for (let i = 0; i < points.length; i++) this.cp.push(points[i]); this.aabb = this.AABB(); } addOutline(s = 0) { for (let i = s, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { if (this.dp.length === 0) return; for (let i = 0, l = this.dp.length; i < l; i+=2) { const d0 = this.dp[i]; const d1 = this.dp[i + 1]; t.penup(); t.goto(d0); t.pendown(); t.goto(d1); } } AABB() { let xmin = 2000; let xmax = -2000; let ymin = 2000; let ymax = -2000; for (let i = 0, l = this.cp.length; i < l; i++) { const x = this.cp[i][0]; const y = this.cp[i][1]; if (x < xmin) xmin = x; if (x > xmax) xmax = x; if (y < ymin) ymin = y; if (y > ymax) ymax = y; } // Bounding box: center x, center y, half w, half h return [ (xmin + xmax) * 0.5, (ymin + ymax) * 0.5, (xmax - xmin) * 0.5, (ymax - ymin) * 0.5 ]; } addHatching(a, d) { const tp = new Polygon(); tp.cp.push( [this.aabb[0] - this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] + this.aabb[3]], [this.aabb[0] - this.aabb[2], this.aabb[1] + this.aabb[3]] ); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); for (let i = 0, l = tp.dp.length; i < l; i++) this.dp.push(tp.dp[i]); } inside(p) { // find number of i ntersection points from p to far away const p1 = [0.1, -1000]; let int = 0; for (let i = 0, l = this.cp.length; i < l; i++) { if ( (p[0]-this.cp[i][0])**2 + (p[1]-this.cp[i][1])**2 <= 0.001) return false; if ( this.vec2_find_segment_intersect( p, p1, this.cp[i], this.cp[(i + 1) % l] ) !== false ) { int++; } } return int & 1; } boolean(p, diff = true) { // polygon diff algorithm const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.vec2_find_segment_intersect( ls0, ls1, p.cp[j], p.cp[(j + 1) % cl] ); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; for (let i = 0, len = int.length; i < len; i++) { let j = i; const item = int[j]; for ( const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy; j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db; j-- ) int[j] = int[j - 1]; int[j] = item; } for (let j = 0; j < int.length - 1; j++) { if ( (int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01 ) { if ( diff === !p.inside([ (int[j][0] + int[j + 1][0]) / 2, (int[j][1] + int[j + 1][1]) / 2 ]) ) { ndp.push(int[j], int[j + 1]); } } } } } this.dp = ndp; return this.dp.length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [ l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1]) ]; } return false; } }; return { create() { return new Polygon(); }, draw(turtle, p) { let vis = true; for (let j = 0; j < polygonList.length; j++) { const p1 = polygonList[j]; // AABB overlapping test - still O(N2) but very fast if ( Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 && Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0 ) { if (p.boolean(p1) === false) { vis = false; break; } } } if (vis) { p.draw(turtle); polygonList.push(p); } } }; }