Hatchtrick 🐣

A study on radial and circular hatching

I started on this turtle with the idea of plotting cubes with a perspective to the center of the turtle. Then I thought to add hatching to the faces of the cubes and here we are...

Radial: Hatchtrick 🐣 (variation)
Fully recentered circular: Hatchtrick 🐣 (variation)
Funky: Hatchtrick 🐣 (variation)
Spooky: Hatchtrick 🐣 (variation)

I also use a Path class... please ignore it, it's still ugly.

🤔 Using shaders as hatching in polygons... shaderturtletoy

Log in to post a comment.

// My first study of different hatching techniques - Jurgen Westerhof 2024
//
// https://turtletoy.net/turtle/716fcbfa5b
//
// License: whatever Turtletoy sets as the default for turtles (at publication: CC BY-NC-SA 4.0)
//    except everyting below line 298 which carries The MIT License since
//    the original Polygons class is MIT Licensed

const n = 100; //min=1 max=200 step=1
const hatching = 2; //min=0 max=3 step=1 (Atan2(location), Radial, Circular, None)
const reCenterHatch = 0; //min=0 max=1 step=.1
const circleHatchGrow = 0; //min=0 max=100 step=1 Setting this to 0 makes it not grow, 100 makes it random
const hatchZDependency = 1; //min=0 max=1 step=1 (No, Yes)
const hatchZMagnitude = 1.4; //min=1 max=2 step=.01
const minSize = 20; //min=1 max=40 step=1
const maxSize = 30; //min=1 max=40 step=1
const length = .07; //min=0 max=1 step=.01
const projectionOrder = 1; //min=0 max=2 step=1 (Random, Nearest first, Nearest last)
const perspective = 4; //min=1 max=10 step=.1
const pen = 1;//min=.1 max=4 step=.1

const sizeMin = Math.min(minSize, maxSize);
const sizeMax = Math.max(minSize, maxSize);
const zGrow = hatchZDependency == 1;

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(.7);

// Global code will be evaluated once.
const turtle = new Turtle();
const polygons = new Polygons();
const upd = new UniformPointDistributor([-80, -80], [80, 80]).getPointIterator(() => Math.random()/2 + .5);

const cubes = Array.from({length: n}).map(v => upd.next().value).sort((a,b) => projectionOrder == 1? ((a[2] < b[2]? -1: 1) * (projectionOrder == 2? -1: 1)): 1);

// The walk function will be called until it returns false.
function walk(i) {
    [cubes.pop()].forEach(cube => drawCube(turtle, cube, lerp1(sizeMin, sizeMax, Math.random() * cube[2]/perspective), 1-length));
    return cubes.length > 0;
}

const randomHatchGrowCache = [];
function randomHatchGrow(c) {
    if(reCenterHatch > 0) return .2+Math.random();
    
    if(randomHatchGrowCache[c] === undefined) {
        randomHatchGrowCache[c] = .2+Math.random();
    }
    return randomHatchGrowCache[c];
}

function drawCube(turtle, location, size, length) {
    const front = [[-.5, -.5], [.5, -.5], [.5, .5], [-.5, .5]]
        .map(pt => scale2(pt, size * location[2]))
        .map(pt => add2(pt, location));

    const path = new Path(...front);
    const hatchArg = ((hatching) => {switch(hatching){
        case 0: return [[Math.atan2(...location),1 * (zGrow?location[2]*hatchZMagnitude:1)]];
        case 1: return [['r', ((lerp1(24, 180, 1-reCenterHatch) / pen)  * (zGrow?location[2]*hatchZMagnitude:1) | 0), lerp2([0,0], location, reCenterHatch)]]
        case 2: return [['c', circleHatchGrow == 0? pen * (zGrow?location[2]*hatchZMagnitude:1): circleHatchGrow == 100? (c) => randomHatchGrow(c) *pen* (zGrow?location[2]*hatchZMagnitude:1): (c) => pen * (1 + c/circleHatchGrow)  * (zGrow?location[2]*hatchZMagnitude:1), lerp2([0,0], location, reCenterHatch)]]
        return [];
    }
    })(hatching)
    path.drawPolygon(polygons, turtle, hatchArg, true, []);

    const sortedFront = front.sort((a,b) => lenSq2(a) < lenSq2(b)? -1: 1);
    const sortedBack = sortedFront.map(pt => scale2(pt, length));
    for(let i = 0; i < 2; i++) {
        const pathB = new Path(
            sortedFront[0], sortedFront[1+i], sortedBack[1+i], sortedBack[0]
        );
        const direction = lerp2(
            add2(sortedFront[0], scale2(sub2(sortedFront[1+i], sortedFront[0]), .5)),
            add2(sortedBack[0], scale2(sub2(sortedBack[1+i], sortedBack[0]), .5)),
            .5
        );
        const hatchDistance = .35 - .2 * Math.abs(Math.atan2(...direction) / Math.PI);
        pathB.drawPolygon(polygons, turtle, [[1, hatchDistance * pen]], true);
    }
}

function Path(...pts) {
    const tourize = (p) => p.pts.concat([p.pts[0]]);
    const intersect_info2 = (as, ad, bs, bd) => {
        const d = [bs[0] - as[0], bs[1] - as[1]];
        const det = bd[0] * ad[1] - bd[1] * ad[0];
        if(det === 0) return false;
        const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det];
        return [...res, add2(as, scale2(ad, res[0]))];
    }
    //different return than my usual segment_intersect2
    const segment_intersect2 = (a,b,c,d, inclusive = true) => {
        const i = intersect_info2(a, sub2(b, a), c, sub2(d, c));
        if(i === false) return false;
        const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1;
        return t?i:false;
    }

    class Path {
        constructor(...pts) {
            this.pts = pts;
        }
        draw(turtle, asTour = false, transforms = []) {
            (asTour? tourize(this): this.pts).map(pt => transforms.reduce((a, c) => c(a), pt)).forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt));
        }
        drawPolygon(polygons, turtle, hatch = [], outline = false, transforms = []) {
            const p = polygons.create();
            if(transforms.length == 0) {
                p.addPoints(...this.pts);
            } else {
                p.addPoints(...this.pts.map(pt => transforms.reduce((a, c) => c(a), pt)));
            }
            hatch.forEach(v => {
                v[0] == 'r'? p.addRadialHatching(...v.filter((v,i) => 0<i)):
                v[0] == 'c'? p.addCircularHatching(...v.filter((v,i) => 0<i)):
                p.addHatching(...v);
            })
            if(outline) p.addOutline();
            polygons.draw(turtle, p);
        }
        increasePointCount(n = 2) {
            this.pts = this.pts.flatMap((pt, i, a) => 
                Array.from({length: n})
                     .flatMap((w, j) => [lerp2(pt, a[(i+1)%a.length], j/n)])
            );
            return this;
        }
        contains(pt) {
           return tourize(this).map((v, i, a) => intersect_info2(v, sub2(a[(i+1)%a.length], v), pt, [pt[0], Number.MAX_SAFE_INTEGER])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] < 1 && 0 < ii[1]).length % 2 == 1;
        }
        getIntersections(path, asTour = false) { //intersection
            const path1 = asTour? tourize(this): this.pts;
            const path2 = asTour? tourize(path): path.pts;
            return path1.flatMap((pt1, i1) => 
                i1 == path1.length - 1? [[false]]: path2.map((pt2, i2) => 
                    i2 == path2.length - 1? [false]: 
                    [segment_intersect2(pt1, path1[i1 + 1], pt2, path2[i2 + 1]), i1, i2]
                )
            ).filter(v => v[0] !== false);
        }
        splitByPath(path, asTour = false) { //only works for convex polygons, not concaves... And only for 2 intersections, not 4 with e.g. overlapping ellipses where they look like a + sign
            const iss = this.getIntersections(path, asTour);
            if(iss.length < 2) return false;
            //console.log('inter', iss);

            const pts_one = [];
            const joined = [];
            for(let i = 0; i <= iss[0][1]; i++) {
                pts_one.push(this.pts[i]);
            }
            pts_one.push(iss[0][0][2]);
            
            let pts_one_in_path = approx1(this.pts[0], iss[0][0][2])? null: (path.contains(this.pts[0])? true: false);
            
            //should we go left or right? convex so this works
            const direction = (() => {
                if(iss[0][2] != iss[1][2]) {
                    return this.contains(path.pts[(iss[0][2] + 1) % path.pts.length])? 1: -1;
                }
                const directionToNextIntersection = sub2(iss[1][0][2], iss[0][0][2]);
                const directionToNextNodeOfPath = sub2(path.pts[(iss[0][2] + 1) % path.pts.length], path.pts[iss[0][2]]);
                
                return dot2(directionToNextIntersection, directionToNextNodeOfPath) < 0? -1: 1;
            })();
            
            const startAt = iss[0][2] + (direction == 1? 1: 0);
            const endAtNotInclusive = (iss[1][2] - (direction == 1? 0: 1) + path.pts.length) % path.pts.length;
            if(iss[0][2] != iss[1][2]) {
                for(let i = startAt; i != endAtNotInclusive; i = (i + direction + path.pts.length) % path.pts.length) {
                    joined.push(path.pts[i]);
                }
            }
            joined.forEach(pt => pts_one.push(pt));
            
            pts_one.push(iss[1][0][2]);

            for(let i = iss[1][1] + 1; i < this.pts.length; i++) {
                pts_one.push(this.pts[i]);
            }
            if(pts_one_in_path === null) pts_one_in_path = path.contains(iss[1][1] + 1);
            
            const pts_two = [iss[0][0][2]];
            for(let i = iss[0][1] + 1; i <= iss[1][1]; i++) {
                pts_two.push(this.pts[i]);
            }
            pts_two.push(iss[1][0][2]);
            
            const result = [new Path(...pts_one), new Path(...pts_two.concat(joined.reverse()))];
            return pts_one_in_path? result.reverse(): result;
        }
    }
    return new Path(...pts);
}

/// Below is the standard lib I just copy paste under almost all my turtles

function approx1(a,b,delta=0.0001) { return -delta < a-b && a-b < delta }
function lerp1(a,b,t){return a+t*(b-a);}

////////////////////////////////////////////////////////////////
// 2D Vector Math utility code - Created by several Turtletoy users
////////////////////////////////////////////////////////////////
function norm2(a) { return scale2(a, 1/len2(a)); }
function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; }
function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; }
function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; }
function scale2(a, s) { return [a[0]*s,a[1]*s]; }
function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; }
function lenSq2(a) { return a[0]**2+a[1]**2; }
function len2(a) { return Math.sqrt(lenSq2(a)); }
function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; }
function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2)
function dist2(a,b) { return Math.hypot(...sub2(a,b)); }
function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; }
function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; }
function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2)
function intersect_info2(as, ad, bs, bd) {
    const d = [bs[0] - as[0], bs[1] - as[1]];
    const det = bd[0] * ad[1] - bd[1] * ad[0];
    if(det === 0) return false;
    const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det];
    return [...res, add2(as, scale2(ad, res[0]))];
}
function intersect_ray2(a, b, c, d) {
    const i = intersect_info2(a, b, c, d);
    return i === false? i: i[2];
}
function segment_intersect2(a,b,c,d, inclusive = true) {
    const i = intersect_info2(a, sub2(b, a), c, sub2(d, c));
    if(i === false) return false;
    const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1;
    return t?i[2]:false;
}
function approx2(a,b,delta=0.0001) { return len2(sub2(a,b)) < delta }
function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; }
function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; }
function nearSq2(test, near, delta = .0001) {
    return near[0] - delta < test[0] && test[0] < near[0] + delta &&
           near[1] - delta < test[1] && test[1] < near[1] + delta;
}

////////////////////////////////////////////////////////////////
// Uniform Point Distribution code - Created by Jurgen Westerhof 2023
////////////////////////////////////////////////////////////////
function UniformPointDistributor(leftTop = [-100, -100], rightBottom = [100, 100]) {
    class UniformPointDistributor {
        constructor(leftTop = [-100, -100], rightBottom = [100, 100]) {
            this.leftTop = leftTop;
            this.rightBottom = rightBottom;
            this.width = rightBottom[0]-leftTop[0];
            this.height = rightBottom[1]-leftTop[1];
            this.maxDist = (this.width**2+this.height**2)**.5;
            this.pts = [];
        }
    
        *getPointIterator(radiusFunction = null, candidates = 20, maxTries = 1000) {
            if(radiusFunction == null) radiusFunction = (x, y, maximum) => 0;
            
            const randomPoint = () => [Math.random()*this.width+this.leftTop[0],Math.random()*this.height+this.leftTop[1]];
            
            this.pts.push([randomPoint()].map(pt => [...pt, radiusFunction(...pt)])[0]);
            yield this.pts[this.pts.length - 1];
            
            while(true) {
                let pt = [0,0,-1];
                let tries = 0;
                while(pt[2] < 0 && tries < maxTries) {
                    tries++;
                    //using [length] candidate points
                    pt = Array.from({length: candidates})
                         //which are random points
                         .map(i => randomPoint())
                         //then add the distance to that candidate minus the radius of each point it is compared to
                         .map(i => [i[0], i[1], this.pts.map(j => [j[0], j[1], Math.hypot(i[0]-j[0], i[1]-j[1]) - j[2]])
                                                   //so that it is the smallest distance from the
                                                   //candidate to any of the already chosen points
                                                   .reduce((prev, current) => (current[2] < prev[2])? current: prev, [0,0,this.maxDist])[2]
                            ])
                         //then pick the candidate that has the largest minimum distance from the group of candidates
                         .reduce((prev, current) => prev == null? current: ((current[2] > prev[2])? current: prev), null)
                         //and set the 3rd position to its own radius instead of the distance to the nearest point
                         .map((v, i, arr) => i < 2? v: radiusFunction(arr[0], arr[1], v))
                         ////and remove the distance before promoting the candidate
                         //.filter((i, k) => k < 2)
                }
                if(tries == maxTries) return false;
                //add a point to the list
                this.pts.push(pt);
                yield pt;
            }
        }
    }
    return new UniformPointDistributor(leftTop, rightBottom);
}


////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021) https://turtletoy.net/turtle/95f33bd383
// (Radial and Circular hathcing by Jurgen Westerhof 2024) https://turtletoy.net/turtle/716fcbfa5b
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////
function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}
addRadialHatching(steps = 360, center = [0,0]) {
    const e=new n;
    const r = 1e10*Math.SQRT2;
    e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
    for(let i = 0; i < steps; i++) {
        e.dp.push([...center], [
            center[0]+r*Math.sin(i*2*Math.PI/steps),
            center[1]+r*-Math.cos(i*2*Math.PI/steps)
        ]);
    }
    e.boolean(this,!1), this.dp=[...this.dp,...e.dp];
}
addCircularHatching(distance = 1, center = [0,0], precision = 1) {
    const dist = typeof distance == 'function'? distance: (c) => distance;
    const e=new n;
    e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
    
    for(let j = 0, r = dist(j)/2; r < 201; r+=dist(j++)) {
        for(let i = 0, max = Math.max(12, 2*Math.PI*r/precision | 0); i < max; i++) {
            e.dp.push(
                [center[0]+r*Math.sin(i*2*Math.PI/max),center[1]+r*-Math.cos(i*2*Math.PI/max)],
                [center[0]+r*Math.sin((i+1)*2*Math.PI/max),center[1]+r*-Math.cos((i+1)*2*Math.PI/max)]
            )
        }
    }
    e.boolean(this,!1), this.dp=[...this.dp,...e.dp];
}
inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}