Circle Packing 2.0: you can't fit more when you increase generations and lower hideBelowRadius. I like to think of it as a trypophobia inducer or soap bubbles on a surface of water.
en.wikipedia.org/wiki/apollonian_gasket
I became aware of the Apollonian Gasket concept through youtube.com/watch?v=6ulglb_jics and some code you see here is adapted from there.
Click that dice on bottom right of slides for nice surprises:
Apollonian Gasket 🏵️ (variation)
Log in to post a comment.
const size = 95; const hideBelowRadius = .8; //min=.1 max=10 step=.1 const hideAboveRadius = 100; //min=.1 max=100 step=.1 const generations = 2; //min=1 max=30 step=1 const firstChildRatio = .5; //min=0 max=1 step=.01 const secondChildRatio = 1; //min=0 max=1 step=.01 const rotateGeneration = 0; //min=0 max=1 step=.01 const mutation = 0; //min=0 max=1 step=.01 Setting mutation to 1 makes every sibling in generation to have completely random child ratios const showMaxR = hideAboveRadius; const minR = hideBelowRadius; // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(-.8); // Global code will be evaluated once. init(); const turtle = new Turtle(); class CircleGenerator { constructor(firstChildRatio = .5, secondChildRatio = 1, mutation = 0) { this.firstChildRatio = firstChildRatio; this.secondChildRatio = secondChildRatio; this.mutation = mutation; this.lastGeneration = 0; } generate(originalCircle, generation = 0) { //for the sake of aesthetics I consider sibblings to have the same mutations for their children if(generation != this.lastGeneration) { const firstChildMutation = 1 + this.mutation * (Math.random() * 2 - 1); const secondChildMutation = 1 + this.mutation * (Math.random() * 2 - 1); this.firstChildRatio = N.clamp(this.firstChildRatio * firstChildMutation, 0, 1); this.secondChildRatio = N.clamp(this.secondChildRatio * secondChildMutation, 0, 1); this.lastGeneration = generation; } if(this.mutation == 1) { this.firstChildRatio = Math.random(); this.secondChildRatio = Math.random(); } const transpose = [...originalCircle.c]; const circle = new Circle([0,0], originalCircle.b); if(circle.r < minR * 2) return []; const rA = circle.r * this.firstChildRatio; const xA = rA - circle.r; const rB = Math.abs( (circle.r - rA) * this.secondChildRatio // max of rB times ratio ); const circleA = new Circle(V.add(circle.c, [xA, 0]), 1/rA); const circleD = new Circle(circleA.c, 1/(rA + rB)); const circleE = new Circle(circle.c, 1/(circle.r - rB)); const intersections = Intersection.circles(circleD.c, circleD.r, circleE.c, circleE.r); const circleB = new Circle( this.secondChildRatio < 0? intersections.point_2: intersections.point_1, 1/rB); circleA.c = V.add( V.trans(V.rot2d(generation * 2 * Math.PI * rotateGeneration), circleA.c), transpose); circleB.c = V.add( V.trans(V.rot2d(generation * 2 * Math.PI * rotateGeneration), circleB.c), transpose); return [circleA, circleB] } } const c = new Circle([0,0], 1/size); const cg = new CircleGenerator(firstChildRatio, secondChildRatio, mutation); const ag = new ApollonianGasket(turtle, c, cg.generate.bind(cg)); ag.circles[0].draw(turtle, showMaxR); // The walk function will be called until it returns false. function walk(i) { return ag.step(); } function ApollonianGasket(turtle, circle, generatorFn) { class ApollonianGasket { constructor(turtle, circle, generatorFn) { this.turtle = turtle; this.queues = [ ]; this.generatorFn = generatorFn; this.addQueue(circle, 0); } addCircle(circle, triplet) { this.drawCircle(circle); this.queues[0][0].push(circle); triplet.forEach((e, i, a) => this.queues[0][1].push([e, a[(i+1)%a.length], circle]) ); } drawCircle(circle) { circle.draw(this.turtle, showMaxR); } addQueue(circle, generation = 0) { if(generation > generations - 1) return; const c = new Circle([...circle.c], -circle.b); const newCircles = this.generatorFn(c, generation); if(newCircles) { newCircles.forEach(cc => this.drawCircle(cc)); this.queues.push([ [c, ...newCircles], [[c, ...newCircles]], generation ]); } } hasNext() { return this.queues[0] !== undefined && this.queues[0][1] !== undefined && this.queues[0][1].length > 0; } step() { if(this.queues[0] === undefined) { return; } const triplet = this.queues[0][1].shift(); // Generate new circles based on Descartes' theorem for (let candidate of complexDescartes(triplet, descartes(...triplet))) { if (candidate.r < minR) continue; if (validate(candidate, triplet)) { this.addCircle(candidate, triplet); } } if(this.queues[0][1].length == 0) { this.queues[0][0].forEach((c,i) => { if(i === 0) return; this.addQueue(c, this.queues[0][2] + 1); }); this.queues.shift(); } return this.hasNext(); } get circles() { return this.queues[0][0]; } } return new ApollonianGasket(turtle, circle, generatorFn); } function validate(candidate, triplet) { if(ag.circles.some(c => V.approx(candidate.c, c.c) && N.approx(candidate.r, c.r))) return false; // Check if all 4 circles are mutually tangential return !triplet.some(c => !isTangent(candidate, c)); } function isTangent(c1, c2) { let d = V.len(V.sub(c1.c, c2.c)); // Tangency check based on distances and radii return N.approx(d, c1.r+c2.r) || N.approx(d, Math.abs(c2.r - c1.r)) } // Complex calculations based on Descartes' theorem for circle generation // https://en.wikipedia.org/wiki/Descartes%27_theorem function complexDescartes(circles, k4) { const zk = circles.map(c => C.scale(c.c, c.b)); const sum = zk.reduce((a,c)=>C.add(a,c),[0,0]); const product = zk.map((e, i, a) => C.mult(e, a[(i+1)%a.length])).reduce((a,c) => C.add(a,c), [0,0]); const root = C.scale(C.sqrt(product), 2); return k4.flatMap(k => [C.add, C.sub].map(fn => new Circle(C.scale(fn(sum, root), 1/k), k))); } // Calculate curvatures (k-values) for new circles using Descartes' theorem function descartes(...circles) { const sum = circles.reduce((a, c) => a + c.b, 0); const product = Math.abs(circles.map((e,i,a) => e.b * a[(i+1)%a.length].b).reduce((a,c) => a + c, 0)); let root = 2 * product**.5; return [sum + root, sum - root]; } function Circle(location, bend) { class Circle { constructor(location, bend) { this.c = location; this.r = Math.abs(1/bend); this.b = bend; } draw(turtle, showMaxR) { if(this.r > showMaxR) return; PT.drawTour(turtle, PT.circle(this.r).map(pt => V.add(pt, this.c))); } } return new Circle(location, bend); } function init() { /////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // https://turtletoy.net/turtle/d068ad6040 /////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } } this.V = Vector; class Intersection2D { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false; } static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]) .filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1) .filter(e => 0 <= e[1][2])// && e[1][2] <= 1) .map(e => ({ position: e[1][0], tourIndex: e[0], tourSegmentPortion: e[1][1], segmentPortion: e[1][2], }) ); } static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1 } static circles(centerA, radiusA, centerB, radiusB) { // Start constructing the response object. const result = { intersect_count: 0, intersect_occurs: true, one_is_in_other: false, are_equal: false, point_1: [null, null], point_2: [null, null], }; // Get vertical and horizontal distances between circles. const dx = centerB[0] - centerA[0]; const dy = centerB[1] - centerA[1]; // Calculate the distance between the circle centers as a straight line. const dist = Math.hypot(dy, dx); // Check if circles intersect. if (dist > radiusA + radiusB) { result.intersect_occurs = false; } // Check one circle isn't inside the other. if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) { result.intersect_occurs = false; result.one_is_in_other = true; } // Check if circles are the same. if (V.approx(centerA, centerB) && radiusA === radiusB) { result.are_equal = true; } // Find the intersection points if (result.intersect_occurs) { // Centroid is the pt where two lines cross. A line between the circle centers // and a line between the intersection points. const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist); // Get the coordinates of centroid. const x2 = centerA[0] + (dx * centroid) / dist; const y2 = centerA[1] + (dy * centroid) / dist; const prec = 10000; // Get the distance from centroid to the intersection points. const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5; // Get the x and y dist of the intersection points from centroid. const rx = -dy * (h / dist); const ry = dx * (h / dist); // Get the intersection points. result.point_1 = [x2 + rx, y2 + ry]; result.point_2 = [x2 - rx, y2 - ry]; // Add intersection count to results if (result.are_equal) { result.intersect_count = null; } else if (result.point_1.x === result.point_2.x && result.point_1.y === result.point_2.y) { result.intersect_count = 1; } else { result.intersect_count = 2; } } return result; } } this.Intersection = Intersection2D; class PathTools { static bezier(p1, cp1, cp2, p2, steps = null) {steps = (steps === null? (V.len(V.sub(cp1, p1)) + V.len(V.sub(cp2, cp1)) + V.len(V.sub(p2, cp2))) | 0: steps) - 1;return Array.from({length: steps + 1}).map((v, i, a, f = i/steps) => [[V.lerp(p1, cp1, f),V.lerp(cp1, cp2, f),V.lerp(cp2, p2, f)]].map(v => V.lerp(V.lerp(v[0], v[1], f), V.lerp(v[1], v[2], f), f))[0]);} // https://stackoverflow.com/questions/18655135/divide-bezier-curve-into-two-equal-halves#18681336 static splitBezier(p1, cp1, cp2, p2, t=.5) {const e = V.lerp(p1, cp1, t);const f = V.lerp(cp1, cp2, t);const g = V.lerp(cp2, p2, t);const h = V.lerp(e, f, t);const j = V.lerp(f, g, t);const k = V.lerp(h, j, t);return [[p1, e, h, k], [k, j, g, p2]];} static circular(radius,verticeCount,rotation=0) {return Array.from({length: verticeCount}).map((e,i,a,f=i*2*Math.PI/verticeCount+rotation) => [radius*Math.cos(f),radius*Math.sin(f)])} static circle(r){return this.circular(r,Math.max(12, r*2*Math.PI|0));} static draw(turtle, path) {path.forEach((pt, i) => turtle[i==0?'jump':'goto'](pt));} static drawTour(turtle, path) {this.draw(turtle, path.concat([path[0]]));} static drawPoint(turtle, pt, r = .1) {this.drawTour(turtle, this.circle(r).map(e => V.add(e, pt)));} static drawArrow(turtle, s, d, width = 6, length = 3) { turtle.jump(s); const arrowHeadBase = V.add(s,d); turtle.goto(arrowHeadBase); turtle.goto(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, width/2]))); turtle.jump(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, -width/2]))); turtle.goto(arrowHeadBase); } } this.PT = PathTools; class Complex { static add(a,b) { return V.add(a,b); } static sub(a,b) { return V.sub(a,b); } static scale(a,s) { return V.scale(a,s); } static mult(a,b) { return [a[0]*b[0]-a[1]*b[1],a[0]*b[1]+a[1]*b[0]]; } static sqrt(a) { return [[Math.hypot(...a)**.5, Math.atan2(...a.reverse()) / 2]].map(ra => [ra[0]*Math.cos(ra[1]), ra[0]*Math.sin(ra[1])]).pop(); } } this.C = Complex; class Numbers { static approx(a,b,p) { return Math.abs(a-b) < (p === undefined? .001: p); } static clamp(a, min, max) { return Math.min(Math.max(a, min), max); } } this.N = Numbers; }