Circle Packing 2.0: you can't fit more when you increase generations and lower hideBelowRadius. I like to think of it as a trypophobia inducer or soap bubbles on a surface of water.
en.wikipedia.org/wiki/apollonian_gasket
I became aware of the Apollonian Gasket concept through youtube.com/watch?v=6ulglb_jics and some code you see here is adapted from there.
Click that dice on bottom right of slides for nice surprises:
Apollonian Gasket 🏵️ (variation)
Log in to post a comment.
const size = 95;
const hideBelowRadius = .8; //min=.1 max=10 step=.1
const hideAboveRadius = 100; //min=.1 max=100 step=.1
const generations = 2; //min=1 max=30 step=1
const firstChildRatio = .5; //min=0 max=1 step=.01
const secondChildRatio = 1; //min=0 max=1 step=.01
const rotateGeneration = 0; //min=0 max=1 step=.01
const mutation = 0; //min=0 max=1 step=.01 Setting mutation to 1 makes every sibling in generation to have completely random child ratios
const showMaxR = hideAboveRadius;
const minR = hideBelowRadius;
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(-.8);
// Global code will be evaluated once.
init();
const turtle = new Turtle();
class CircleGenerator {
constructor(firstChildRatio = .5, secondChildRatio = 1, mutation = 0) {
this.firstChildRatio = firstChildRatio;
this.secondChildRatio = secondChildRatio;
this.mutation = mutation;
this.lastGeneration = 0;
}
generate(originalCircle, generation = 0) {
//for the sake of aesthetics I consider sibblings to have the same mutations for their children
if(generation != this.lastGeneration) {
const firstChildMutation = 1 + this.mutation * (Math.random() * 2 - 1);
const secondChildMutation = 1 + this.mutation * (Math.random() * 2 - 1);
this.firstChildRatio = N.clamp(this.firstChildRatio * firstChildMutation, 0, 1);
this.secondChildRatio = N.clamp(this.secondChildRatio * secondChildMutation, 0, 1);
this.lastGeneration = generation;
}
if(this.mutation == 1) {
this.firstChildRatio = Math.random();
this.secondChildRatio = Math.random();
}
const transpose = [...originalCircle.c];
const circle = new Circle([0,0], originalCircle.b);
if(circle.r < minR * 2) return [];
const rA = circle.r * this.firstChildRatio;
const xA = rA - circle.r;
const rB = Math.abs(
(circle.r - rA) * this.secondChildRatio // max of rB times ratio
);
const circleA = new Circle(V.add(circle.c, [xA, 0]), 1/rA);
const circleD = new Circle(circleA.c, 1/(rA + rB));
const circleE = new Circle(circle.c, 1/(circle.r - rB));
const intersections = Intersection.circles(circleD.c, circleD.r, circleE.c, circleE.r);
const circleB = new Circle( this.secondChildRatio < 0? intersections.point_2: intersections.point_1, 1/rB);
circleA.c = V.add( V.trans(V.rot2d(generation * 2 * Math.PI * rotateGeneration), circleA.c), transpose);
circleB.c = V.add( V.trans(V.rot2d(generation * 2 * Math.PI * rotateGeneration), circleB.c), transpose);
return [circleA, circleB]
}
}
const c = new Circle([0,0], 1/size);
const cg = new CircleGenerator(firstChildRatio, secondChildRatio, mutation);
const ag = new ApollonianGasket(turtle, c, cg.generate.bind(cg));
ag.circles[0].draw(turtle, showMaxR);
// The walk function will be called until it returns false.
function walk(i) {
return ag.step();
}
function ApollonianGasket(turtle, circle, generatorFn) {
class ApollonianGasket {
constructor(turtle, circle, generatorFn) {
this.turtle = turtle;
this.queues = [ ];
this.generatorFn = generatorFn;
this.addQueue(circle, 0);
}
addCircle(circle, triplet) {
this.drawCircle(circle);
this.queues[0][0].push(circle);
triplet.forEach((e, i, a) =>
this.queues[0][1].push([e, a[(i+1)%a.length], circle])
);
}
drawCircle(circle) {
circle.draw(this.turtle, showMaxR);
}
addQueue(circle, generation = 0) {
if(generation > generations - 1) return;
const c = new Circle([...circle.c], -circle.b);
const newCircles = this.generatorFn(c, generation);
if(newCircles) {
newCircles.forEach(cc => this.drawCircle(cc));
this.queues.push([
[c, ...newCircles],
[[c, ...newCircles]],
generation
]);
}
}
hasNext() {
return this.queues[0] !== undefined && this.queues[0][1] !== undefined && this.queues[0][1].length > 0;
}
step() {
if(this.queues[0] === undefined) {
return;
}
const triplet = this.queues[0][1].shift();
// Generate new circles based on Descartes' theorem
for (let candidate of complexDescartes(triplet, descartes(...triplet))) {
if (candidate.r < minR) continue;
if (validate(candidate, triplet)) {
this.addCircle(candidate, triplet);
}
}
if(this.queues[0][1].length == 0) {
this.queues[0][0].forEach((c,i) => {
if(i === 0) return;
this.addQueue(c, this.queues[0][2] + 1);
});
this.queues.shift();
}
return this.hasNext();
}
get circles() {
return this.queues[0][0];
}
}
return new ApollonianGasket(turtle, circle, generatorFn);
}
function validate(candidate, triplet) {
if(ag.circles.some(c => V.approx(candidate.c, c.c) && N.approx(candidate.r, c.r))) return false;
// Check if all 4 circles are mutually tangential
return !triplet.some(c => !isTangent(candidate, c));
}
function isTangent(c1, c2) {
let d = V.len(V.sub(c1.c, c2.c));
// Tangency check based on distances and radii
return N.approx(d, c1.r+c2.r) || N.approx(d, Math.abs(c2.r - c1.r))
}
// Complex calculations based on Descartes' theorem for circle generation
// https://en.wikipedia.org/wiki/Descartes%27_theorem
function complexDescartes(circles, k4) {
const zk = circles.map(c => C.scale(c.c, c.b));
const sum = zk.reduce((a,c)=>C.add(a,c),[0,0]);
const product = zk.map((e, i, a) => C.mult(e, a[(i+1)%a.length])).reduce((a,c) => C.add(a,c), [0,0]);
const root = C.scale(C.sqrt(product), 2);
return k4.flatMap(k => [C.add, C.sub].map(fn => new Circle(C.scale(fn(sum, root), 1/k), k)));
}
// Calculate curvatures (k-values) for new circles using Descartes' theorem
function descartes(...circles) {
const sum = circles.reduce((a, c) => a + c.b, 0);
const product = Math.abs(circles.map((e,i,a) => e.b * a[(i+1)%a.length].b).reduce((a,c) => a + c, 0));
let root = 2 * product**.5;
return [sum + root, sum - root];
}
function Circle(location, bend) {
class Circle {
constructor(location, bend) {
this.c = location;
this.r = Math.abs(1/bend);
this.b = bend;
}
draw(turtle, showMaxR) {
if(this.r > showMaxR) return;
PT.drawTour(turtle, PT.circle(this.r).map(pt => V.add(pt, this.c)));
}
}
return new Circle(location, bend);
}
function init() {
///////////////////////////////////////////////////////
// Vector functions - Created by Jurgen Westerhof 2024
// https://turtletoy.net/turtle/d068ad6040
///////////////////////////////////////////////////////
class Vector {
static add (a,b) { return a.map((v,i)=>v+b[i]); }
static sub (a,b) { return a.map((v,i)=>v-b[i]); }
static mul (a,b) { return a.map((v,i)=>v*b[i]); }
static div (a,b) { return a.map((v,i)=>v/b[i]); }
static scale(a,s) { return a.map(v=>v*s); }
static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); }
static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading
static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; }
static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; }
static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); }
//Mirror vector a in a ray through [0,0] with direction mirror
static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); }
static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); }
static norm (a) { return this.scale(a,1/this.len(a)); }
static len (a) { return Math.hypot(...a); }
static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); }
static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); }
static dist (a,b) { return Math.hypot(...this.sub(a,b)); }
static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); }
static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); }
}
this.V = Vector;
class Intersection2D {
//a-start, a-direction, b-start, b-direction
//returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction
static info(as, ad, bs, bd) {
const d = V.sub(bs, as), det = -V.det([bd, ad]);
if(det === 0) return false;
const res = [V.det([d, bd]) / det, V.det([d, ad]) / det];
return [V.add(as, V.scale(ad, res[0])), ...res];
}
static ray(a, b, c, d) {
return this.info(a, b, c, d);
}
static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) {
const i = this.info(a, V.sub(b, a), c, V.sub(d, c));
return i === false? false: (
(inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2])
&& (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1)
)?i[0]:false;
}
static tour(tour, segmentStart, segmentDirection) {
return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)])
.filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1)
.filter(e => 0 <= e[1][2])// && e[1][2] <= 1)
.map(e => ({
position: e[1][0],
tourIndex: e[0],
tourSegmentPortion: e[1][1],
segmentPortion: e[1][2],
})
);
}
static inside(tour, pt) {
return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1
}
static circles(centerA, radiusA, centerB, radiusB) {
// Start constructing the response object.
const result = {
intersect_count: 0,
intersect_occurs: true,
one_is_in_other: false,
are_equal: false,
point_1: [null, null],
point_2: [null, null],
};
// Get vertical and horizontal distances between circles.
const dx = centerB[0] - centerA[0];
const dy = centerB[1] - centerA[1];
// Calculate the distance between the circle centers as a straight line.
const dist = Math.hypot(dy, dx);
// Check if circles intersect.
if (dist > radiusA + radiusB) {
result.intersect_occurs = false;
}
// Check one circle isn't inside the other.
if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {
result.intersect_occurs = false;
result.one_is_in_other = true;
}
// Check if circles are the same.
if (V.approx(centerA, centerB) && radiusA === radiusB) {
result.are_equal = true;
}
// Find the intersection points
if (result.intersect_occurs) {
// Centroid is the pt where two lines cross. A line between the circle centers
// and a line between the intersection points.
const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);
// Get the coordinates of centroid.
const x2 = centerA[0] + (dx * centroid) / dist;
const y2 = centerA[1] + (dy * centroid) / dist;
const prec = 10000;
// Get the distance from centroid to the intersection points.
const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;
// Get the x and y dist of the intersection points from centroid.
const rx = -dy * (h / dist);
const ry = dx * (h / dist);
// Get the intersection points.
result.point_1 = [x2 + rx, y2 + ry];
result.point_2 = [x2 - rx, y2 - ry];
// Add intersection count to results
if (result.are_equal) {
result.intersect_count = null;
} else if (result.point_1.x === result.point_2.x && result.point_1.y === result.point_2.y) {
result.intersect_count = 1;
} else {
result.intersect_count = 2;
}
}
return result;
}
}
this.Intersection = Intersection2D;
class PathTools {
static bezier(p1, cp1, cp2, p2, steps = null) {steps = (steps === null? (V.len(V.sub(cp1, p1)) + V.len(V.sub(cp2, cp1)) + V.len(V.sub(p2, cp2))) | 0: steps) - 1;return Array.from({length: steps + 1}).map((v, i, a, f = i/steps) => [[V.lerp(p1, cp1, f),V.lerp(cp1, cp2, f),V.lerp(cp2, p2, f)]].map(v => V.lerp(V.lerp(v[0], v[1], f), V.lerp(v[1], v[2], f), f))[0]);}
// https://stackoverflow.com/questions/18655135/divide-bezier-curve-into-two-equal-halves#18681336
static splitBezier(p1, cp1, cp2, p2, t=.5) {const e = V.lerp(p1, cp1, t);const f = V.lerp(cp1, cp2, t);const g = V.lerp(cp2, p2, t);const h = V.lerp(e, f, t);const j = V.lerp(f, g, t);const k = V.lerp(h, j, t);return [[p1, e, h, k], [k, j, g, p2]];}
static circular(radius,verticeCount,rotation=0) {return Array.from({length: verticeCount}).map((e,i,a,f=i*2*Math.PI/verticeCount+rotation) => [radius*Math.cos(f),radius*Math.sin(f)])}
static circle(r){return this.circular(r,Math.max(12, r*2*Math.PI|0));}
static draw(turtle, path) {path.forEach((pt, i) => turtle[i==0?'jump':'goto'](pt));}
static drawTour(turtle, path) {this.draw(turtle, path.concat([path[0]]));}
static drawPoint(turtle, pt, r = .1) {this.drawTour(turtle, this.circle(r).map(e => V.add(e, pt)));}
static drawArrow(turtle, s, d, width = 6, length = 3) {
turtle.jump(s);
const arrowHeadBase = V.add(s,d);
turtle.goto(arrowHeadBase);
turtle.goto(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, width/2])));
turtle.jump(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, -width/2])));
turtle.goto(arrowHeadBase);
}
}
this.PT = PathTools;
class Complex {
static add(a,b) { return V.add(a,b); }
static sub(a,b) { return V.sub(a,b); }
static scale(a,s) { return V.scale(a,s); }
static mult(a,b) { return [a[0]*b[0]-a[1]*b[1],a[0]*b[1]+a[1]*b[0]]; }
static sqrt(a) { return [[Math.hypot(...a)**.5, Math.atan2(...a.reverse()) / 2]].map(ra => [ra[0]*Math.cos(ra[1]), ra[0]*Math.sin(ra[1])]).pop(); }
}
this.C = Complex;
class Numbers {
static approx(a,b,p) { return Math.abs(a-b) < (p === undefined? .001: p); }
static clamp(a, min, max) { return Math.min(Math.max(a, min), max); }
}
this.N = Numbers;
}