Bezier curves are used to generate multi-scale quad or double quad Truchet tiles. Inspired by @revdancatt: twitter.com/revdancatt/status/1410268274009456642
Variation: Multi-scale bezier Truchet tiles (variation)
#truchet #bezier
Log in to post a comment.
// Forked from "Bezier Truchet tiles" by reinder // https://turtletoy.net/turtle/f107e05a76 // Bezier Truchet tiles. Created by Reinder Nijhoff 2021 - @reindernijhoff // // https://turtletoy.net/turtle/f107e05a76 // const turtle = new Turtle(); const scale = 12; const type = 0; // min=0, max=1, step=1 (Quad, Double Quad) const minDepth = 2; // min=1, max=10, step=1 const maxDepth = 5; // min=1, max=10, step=1 const subDivChange = .8; // min=0, max=1, step=0.01 const numLines = 2; // min=1, max=4, step=1 const curviness = .5522848; // min=0.0, max=1.0, step=0.01 function* drawTiles(turtle) { const tiles = [{x: 0, y: 0, depth: 0, size: 100}]; do { const t = tiles.shift(); if (t.depth < minDepth || (Math.random() < subDivChange && t.depth < maxDepth)) { tiles.push( {x: t.x - t.size / 2, y: t.y - t.size / 2, depth: t.depth + 1, size: t.size / 2}); tiles.push( {x: t.x - t.size / 2, y: t.y + t.size / 2, depth: t.depth + 1, size: t.size / 2}); tiles.push( {x: t.x + t.size / 2, y: t.y + t.size / 2, depth: t.depth + 1, size: t.size / 2}); tiles.push( {x: t.x + t.size / 2, y: t.y - t.size / 2, depth: t.depth + 1, size: t.size / 2}); } else { drawTile(turtle, t.x, t.y, t.size * 2, numLines * (1 << (maxDepth - t.depth + 1)) - 2); } yield true; } while(tiles.length > 0); } function drawTile(t, x, y, scale, innerLines, depth) { const polys = new Polygons(); const tile = generateTile(x, y); const lw = tile.lineWidth * .5 * ((innerLines+1) / (innerLines+2)); // transform const ts = p => [scale*p[0]+tile.center[0], scale*p[1]+tile.center[1]]; // vec2 helper functions const add = (a, b) => [a[0]+b[0], a[1]+b[1]]; const sub = (a, b) => [a[0]-b[0], a[1]-b[1]]; const scl = (a, b) => [a[0]*b, a[1]*b]; const dst = (a, b) => Math.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2); const bez = (p0, p1, p2, p3, t) => { const k = 1 - t; return [ k*k*k*p0[0] + 3*k*k*t*p1[0] + 3*k*t*t*p2[0] + t*t*t*p3[0], k*k*k*p0[1] + 3*k*k*t*p1[1] + 3*k*t*t*p2[1] + t*t*t*p3[1] ]; } // helper function: add a bezier curve to a polygon p. const addBezier = (p, p0, d0, p1, d1, dist, asEdge, asLine) => { // calculate start, end and control points for bezier const sp = sub(p0, scl([d0[1],-d0[0]], dist)), ep = add(p1, scl([d1[1],-d1[0]], dist)), curve = curviness*(dst(sp,ep)**(2/3))*tile.lineWidth, sc = add(sp, scl(d0,curve)), ec = add(ep, scl(d1,curve)); const points = []; const s = 10; for (let i=0, steps=s; i<=steps; i++) { points.push(ts(bez(sp, sc, ec, ep, i/steps))); } if (asEdge) p.addPoints(...points); if (asLine) { for (let i=0, steps=s; i<steps; i++) p.addSegments(points[i],points[i+1]); } } // shuffle points of tile -> this gives the random connections const p = tile.points.sort(() => Math.random()-.5); // create and draw a bezier-based polygon for each connection for (let i=0; i<p.length; i+=2) { const s = p[i+0], e = p[i+1], l = polys.create(); addBezier(l, s[0], s[1], e[0], e[1], lw, true, true); addBezier(l, e[0], e[1], s[0], s[1], lw, true, true); for (let j=0; j<innerLines; j++) { addBezier(l, e[0], e[1], s[0], s[1], 2*lw*(j+1)/(innerLines+1)-lw, false, true); } polys.draw(t, l); } } // A tile has a center and a set of points (positions + directions). The points will be used as // start or end point of the bezier curves. function generateTile(x, y) { if (type === 0) { return { // quad center: [x,y], lineWidth: 1, points: [[[0,.5],[0,-1]], [[0,-.5],[0,1]], [[.5,0],[-1,0]],[[-.5,0],[1,0]]] }; } else { return { // double quad center: [x,y], lineWidth: .5, points: [[[.25,.5],[0,-1]], [[.25,-.5],[0,1]], [[.5,.25],[-1,0]],[[-.5,.25],[1,0]], [[-.25,.5],[0,-1]], [[-.25,-.5],[0,1]], [[.5,-.25],[-1,0]],[[-.5,-.25],[1,0]]] }; } } const drawIterator = drawTiles(turtle); function walk(i) { return !drawIterator.next().done; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }