Multi-scale bezier Truchet tiles

Bezier curves are used to generate multi-scale quad or double quad Truchet tiles. Inspired by @revdancatt: twitter.com/revdancatt/status/1410268274009456642

Variation: Multi-scale bezier Truchet tiles (variation)

#truchet #bezier

Log in to post a comment.

// Forked from "Bezier Truchet tiles" by reinder
// https://turtletoy.net/turtle/f107e05a76

// Bezier Truchet tiles. Created by Reinder Nijhoff 2021 - @reindernijhoff
//
// https://turtletoy.net/turtle/f107e05a76
//

const turtle = new Turtle();

const scale = 12;
const type = 0; // min=0, max=1, step=1 (Quad, Double Quad)
const minDepth = 2; // min=1, max=10, step=1
const maxDepth = 5; // min=1, max=10, step=1
const subDivChange = .8; // min=0, max=1, step=0.01
const numLines = 2; // min=1, max=4, step=1
const curviness = .5522848; // min=0.0, max=1.0, step=0.01

function* drawTiles(turtle) {
    const tiles = [{x: 0, y: 0, depth: 0, size: 100}];
    
    do {
        const t = tiles.shift();
        if (t.depth < minDepth || (Math.random() < subDivChange && t.depth < maxDepth)) {
            tiles.push( {x: t.x - t.size / 2, y: t.y - t.size / 2, depth: t.depth + 1, size: t.size / 2});
            tiles.push( {x: t.x - t.size / 2, y: t.y + t.size / 2, depth: t.depth + 1, size: t.size / 2});
            tiles.push( {x: t.x + t.size / 2, y: t.y + t.size / 2, depth: t.depth + 1, size: t.size / 2});
            tiles.push( {x: t.x + t.size / 2, y: t.y - t.size / 2, depth: t.depth + 1, size: t.size / 2});
        } else {
            drawTile(turtle, t.x, t.y, t.size * 2, numLines * (1 << (maxDepth - t.depth + 1)) - 2);
        }
        yield true;
    } while(tiles.length > 0);
}

function drawTile(t, x, y, scale, innerLines, depth) {
    const polys  = new Polygons();
    const tile = generateTile(x, y);
    const lw = tile.lineWidth * .5 * ((innerLines+1) / (innerLines+2));
    // transform
    const ts  = p => [scale*p[0]+tile.center[0], scale*p[1]+tile.center[1]];
    // vec2 helper functions
    const add = (a, b) => [a[0]+b[0], a[1]+b[1]];
    const sub = (a, b) => [a[0]-b[0], a[1]-b[1]];
    const scl = (a, b) => [a[0]*b, a[1]*b];
    const dst = (a, b) => Math.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2);
    const bez = (p0, p1, p2, p3, t) => {
        const k = 1 - t;
        return [    k*k*k*p0[0] + 3*k*k*t*p1[0] + 3*k*t*t*p2[0] + t*t*t*p3[0],
                    k*k*k*p0[1] + 3*k*k*t*p1[1] + 3*k*t*t*p2[1] + t*t*t*p3[1] ];
    }
    // helper function: add a bezier curve to a polygon p.
    const addBezier = (p, p0, d0, p1, d1, dist, asEdge, asLine) => {
        // calculate start, end and control points for bezier
        const sp = sub(p0, scl([d0[1],-d0[0]], dist)),
              ep = add(p1, scl([d1[1],-d1[0]], dist)),
              curve = curviness*(dst(sp,ep)**(2/3))*tile.lineWidth,
              sc = add(sp, scl(d0,curve)), ec = add(ep, scl(d1,curve));
              
        const points = [];
        const s = 10;
        for (let i=0, steps=s; i<=steps; i++) {
           points.push(ts(bez(sp, sc, ec, ep, i/steps)));
        }
        if (asEdge) p.addPoints(...points);
        if (asLine) {
            for (let i=0, steps=s; i<steps; i++) p.addSegments(points[i],points[i+1]);
        }
    }
    // shuffle points of tile -> this gives the random connections
    const p = tile.points.sort(() => Math.random()-.5);
    
    // create and draw a bezier-based polygon for each connection
    for (let i=0; i<p.length; i+=2) {
        const s = p[i+0], e = p[i+1], l = polys.create();
        addBezier(l, s[0], s[1], e[0], e[1], lw, true, true);        
        addBezier(l, e[0], e[1], s[0], s[1], lw, true, true);
        for (let j=0; j<innerLines; j++) {
            addBezier(l, e[0], e[1], s[0], s[1], 2*lw*(j+1)/(innerLines+1)-lw, false, true);   
        }
        polys.draw(t, l);
    }
}

// A tile has a center and a set of points (positions + directions). The points will be used as
// start or end point of the bezier curves.
function generateTile(x, y) {
    if (type === 0) {
        return { // quad
                    center: [x,y],
                    lineWidth: 1,
                    points: [[[0,.5],[0,-1]], [[0,-.5],[0,1]], [[.5,0],[-1,0]],[[-.5,0],[1,0]]]
                };
    } else {
        return { // double quad
                    center: [x,y],
                    lineWidth: .5,
                    points: [[[.25,.5],[0,-1]], [[.25,-.5],[0,1]], [[.5,.25],[-1,0]],[[-.5,.25],[1,0]],
                             [[-.25,.5],[0,-1]], [[-.25,-.5],[0,1]], [[.5,-.25],[-1,0]],[[-.5,-.25],[1,0]]]
                };
    }
}

const drawIterator = drawTiles(turtle);

function walk(i) {
  return !drawIterator.next().done;
}

////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////

function Polygons() {
	const polygonList = [];
	const Polygon = class {
		constructor() {
			this.cp = [];       // clip path: array of [x,y] pairs
			this.dp = [];       // 2d lines [x0,y0],[x1,y1] to draw
			this.aabb = [];     // AABB bounding box
		}
		addPoints(...points) {
		    // add point to clip path and update bounding box
		    let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5;
			(this.cp = [...this.cp, ...points]).forEach( p => {
				xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]);
				ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]);
			});
		    this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2];
		}
		addSegments(...points) {
		    // add segments (each a pair of points)
		    points.forEach(p => this.dp.push(p));
		}
		addOutline() {
			for (let i = 0, l = this.cp.length; i < l; i++) {
				this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
			}
		}
		draw(t) {
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				t.jump(this.dp[i]), t.goto(this.dp[i + 1]);
			}
		}
		addHatching(a, d) {
			const tp = new Polygon();
			tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
			const dx = Math.sin(a) * d,   dy = Math.cos(a) * d;
			const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
			for (let i = 0.5; i < 150 / d; i++) {
				tp.dp.push([dx * i + cy,   dy * i - cx], [dx * i - cy,   dy * i + cx]);
				tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
			}
			tp.boolean(this, false);
			this.dp = [...this.dp, ...tp.dp];
		}
		inside(p) {
			let int = 0; // find number of i ntersection points from p to far away
			for (let i = 0, l = this.cp.length; i < l; i++) {
				if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) {
					int++;
				}
			}
			return int & 1; // if even your outside
		}
		boolean(p, diff = true) {
		    // bouding box optimization by ge1doot.
		    if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 &&
				Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0;
				
			// polygon diff algorithm (narrow phase)
			const ndp = [];
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const ls0 = this.dp[i];
				const ls1 = this.dp[i + 1];
				// find all intersections with clip path
				const int = [];
				for (let j = 0, cl = p.cp.length; j < cl; j++) {
					const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]);
					if (pint !== false) {
						int.push(pint);
					}
				}
				if (int.length === 0) {
					// 0 intersections, inside or outside?
					if (diff === !p.inside(ls0)) {
						ndp.push(ls0, ls1);
					}
				} else {
					int.push(ls0, ls1);
					// order intersection points on line ls.p1 to ls.p2
					const cmpx = ls1[0] - ls0[0];
					const cmpy = ls1[1] - ls0[1];
					int.sort( (a,b) =>  (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - 
					                    (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy);
					 
					for (let j = 0; j < int.length - 1; j++) {
						if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) {
							if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) {
								ndp.push(int[j], int[j+1]);
							}
						}
					}
				}
			}
			return (this.dp = ndp).length > 0;
		}
		//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
		segment_intersect(l1p1, l1p2, l2p1, l2p2) {
			const d   = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
			if (d === 0) return false;
			const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
			const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
			const ua = n_a / d;
			const ub = n_b / d;
			if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
				return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])];
			}
			return false;
		}
	};
	return {
		list: () => polygonList,
		create: () => new Polygon(),
		draw: (turtle, p, addToVisList=true) => {
			for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++);
			p.draw(turtle);
			if (addToVisList) polygonList.push(p);
		}
	};
}