Log in to post a comment.
const turtle = new Turtle(); const seed = 50; //// min=1, max=100, step=1 const rows = 24; // min=4, max=50, step=1 const size = 90; // min=10, max=100, step=1 let itemMinSize = 5; // min=1, max=50, step=1 let itemMaxSize = 20; // min=1, max=50, step=1 const space = 2; // min=1, max=20, step=1 const hatch = 0; // min=0, max=4, step=0.1 const hatchDirection = 2; // min=0, max=4, step=1 (Random, Horizontal/Vertical, Diagonal, Radial, Gradient) const hatchFill = 0; // min=0, max=3, step=1 (Solid, Random, Gradient, Radial) const border = 0; // min=0, max=5, step=0.25 const distortion = 0; // min=0, max=1, step=0.01 if (itemMinSize > itemMaxSize) { [itemMinSize, itemMaxSize] = [itemMaxSize, itemMinSize]; } function walk(i) { let height = size / (rows * 0.5) - space; let mod = i % 2; let x = -size + space * 0.5; let y = space * 0.5 + -size + i * (height + space); while (x < size - space - itemMaxSize) { let width = itemMinSize + Math.random() * (itemMaxSize - itemMinSize); drawBrick([x, y, width, height], mod++); x += width + space; } drawBrick([x, y, size - space *0.5 - x, height], mod++); // closing brick return i < rows - 1; } function drawBrick(rect, idx = 0) { let [x,y,w,h] = rect; const rectPoints = [[x,y],[x+w,y],[x+w,y+h],[x,y+h]]; const randomizedPoints = randomizePoints(rectPoints, distortion); if (border) { const borderPoints = [[x-border,y-border],[x+w+border,y-border],[x+w+border,y+h+border],[x-border,y+h+border]]; drawPoints(randomizePoints(borderPoints, distortion), turtle); } drawPoints(randomizedPoints, turtle); if (hatch > 0) { let util = new Polygons(); let p = util.create(); randomizedPoints.forEach(pt => p.addPoints(pt)); let angle; if (hatchDirection === 0) angle = Math.random() * Math.PI*2; else if (hatchDirection === 1) angle = (idx % 2)/2 * Math.PI + Math.PI/2; else if (hatchDirection === 2) angle = (idx % 2)/2 * Math.PI+ Math.PI/4; else if (hatchDirection === 3) angle = -Math.atan2(y+h*0.5, x+w*0.5); else if (hatchDirection === 4) angle = Math.abs((x+w/2)/size)*Math.PI/2 + Math.PI/2; let fill; if (hatchFill === 0) fill = hatch + 0.5; else if (hatchFill === 1) fill = 0.5 + Math.random()*hatch; else if (hatchFill === 2) fill = 0.5 + hatch *Math.abs((x+w/2)/size)/2; else if (hatchFill === 3) fill = 0.5 + hatch * Math.pow(Math.abs(Math.atan2(y+h*0.5, x+w*0.5)/3),2); p.addHatching(angle, fill); util.draw(turtle,p); } } function drawPoints(points, turtle) { if (points.length > 0) turtle.jump(points[points.length-1]); points.forEach(point => turtle.goto(point)); } function scl2(a,b) { return [a[0]*b, a[1]*b]; } function add2(a,b) { return [a[0]+b[0], a[1]+b[1]]; } function sub2(a,b) { return [a[0]-b[0], a[1]-b[1]]; } function dot2(a,b) { return a[0]*b[0] + a[1]*b[1]; } function randomizePoints(points, scale = 1) { return points.map( point => add2(point, scl2( add2( [hash(dot2(point, [11, 13])), hash(dot2(point, [17, 19]))], [-.5,-.5]), scale))); } // pseudo random methods function hash(p) { p += seed; p = 1103515245 * (((p) >> 1) ^ (p)); p = 1103515245 * (p ^ (p>>3)); p = p ^ (p >> 16); return p / 1103515245 % 1; } let rseed = seed; function rand() { let r = 1103515245 * (((rseed) >> 1) ^ (rseed++)); r = 1103515245 * (r ^ (r>>3)); r = r ^ (r >> 16); return r / 1103515245 % 1; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }