Derived from Cubic cityscape #1
Reduced the randomness - made some of the parameters settable.
Added scale/zoom & hatching parameters
Log in to post a comment.
// Cubic cityscape #1. Created by Reinder Nijhoff 2018
// @reindernijhoff
//
// https://turtletoy.net/turtle/789cce3829
//
// Try different settings here:
const useOrthoGraphicPerspective = false;
const towerness = .25; // [0, 1)
const topDownView = true;
const addHatching = true;
const scale = 3; // 1.0 - 10.0
const stretch = 1.0; // < 1.0 squashes, > 1.0 stretches vertically
const hatchingAngle = 0.70;// 0.0 - horizontal, 1.5 - vertical, 3.0 horizontal
const hatchingSpacing = 4; // Higher = fewer hatching lines
// A lot of ugly code:
Canvas.setpenopacity(1);
const turtle = new Turtle();
let viewProjectionMatrix;
let polygonList = [];
const lineSegmentsDrawn = []; // keep track of all line segments. Don't draw duplicates
const width = 20;
const depth = 40;
const camPos = [12,topDownView?13.5:-10.5,-2.3];
const camLookat = [20,topDownView?9.5:-6,-15];
function walk(i) {
if (i == 0) {
setupCamera();
}
for (let j=0; j<width; j++) {
const x = (width - j + (i+1)/2|0) - (width-20);
const z = -(j + i/2|0) + (width-20);
const y = (x-z-40); // 2
drawHome(turtle, [x,y,z], true);
}
return i < depth;
}
function createWall() {
return[createSquare([0,0,0], [1,1,0])]; // wall
}
function createWallDecoration(floorLevel) {
const p = [];
for (let i=0; i<2; i++) {
const x = .2+i*.4;
if (Math.random() > .5) {
p.push(createSquare([x,0.3,0], [x+.2,.7,0])); // window
} else if (floorLevel && Math.random() > .7) {
p.push(createSquare([x,0,0], [x+.2,.7,0])); // door
}
}
return p;
}
function createRoof() {
const p = [];
let flat = false;
if (Math.random() > .5) {
p.push(createSquare([0,1,0], [1,1,-1])); // roof
flat = true;
} else {
p.push(createSquare([0,1,0], [1,1.5,-.5])); // roof
p.push(createSquare([0,1,-1], [1,1.5,-.5]).reverse()); // roof
p.push([[0,1,-1],[0,1.5,-.5],[0,1,0]]);
p.push([[1,1,0],[1,1.5,-.5],[1,1,-1]]);
if (Math.random() > .5) {
return {flatRoof: false, flipped: true, polygons: flipxz(p)};
}
}
return {flatRoof: flat, flipped: false, polygons: p};
}
function drawHome(turtle, loc, floorLevel) {
let p = [];
const occluders = [];
let roof = false;
p = p.concat(center(createWall(), loc));
p = p.concat(center(flipxz(createWall()), loc));
p = p.concat(center(createWallDecoration(floorLevel), loc));
p = p.concat(center(flipxz(createWallDecoration(floorLevel)), loc));
if (Math.random() > 1-towerness) { // extra level
drawHome(turtle, add3(loc,[0,1,0]), false);
} else {
roof = createRoof();
p = p.concat(center(roof.polygons, loc));
}
for (let i=0; i<p.length; i++) {
const polygon = new Polygon();
const vl = p[i];
const vd = useOrthoGraphicPerspective ?
sub3(camLookat, camPos) : sub3(scale3(add3(vl[0],vl[2]),.5), camPos);
let normal = cross3(sub3(vl[1],vl[0]),sub3(vl[2],vl[0]));
if (dot3(normal,vd) < 0 ) {
continue;
}
for (let j=0; j<vl.length; j++) {
const v = transform4(vl[j], viewProjectionMatrix);
if (useOrthoGraphicPerspective) {
polygon.cp.push([(v[0]*2.5), -(v[1]*2.5)]);
} else {
polygon.cp.push([(v[0]/v[3]*50), -(v[1]/v[3]*50)]);
}
}
let vis = false;
for (let j=0; j<polygon.cp.length; j++) {
if (Math.abs(polygon.cp[j][0]) < 100 && Math.abs(polygon.cp[j][1]) < 100) {
vis = true;
}
}
if (!vis) {
continue;
}
if (i<2) { // first two are walls
polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1]));
if (roof && !topDownView) {
if (roof.flatRoof || (roof.flipped && i == 1) || (!roof.flipped && i == 0)) {
polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2]));
}
}
polygon.dp.push(new LineSegment(polygon.cp[2], polygon.cp[3]));
} else if (polygon.cp.length === 3) { // roof
polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1]));
polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2]));
} else {
polygon.addOutline();
}
if (addHatching) {
normal = normalize3(normal);
if (normal[2] < 0) {
polygon.addHatching(hatchingAngle, hatchingSpacing);
}
}
const occluder = drawPolygon(turtle, polygon);
if (i<2) { // first two are walls
occluders.push(polygon);
} else if (occluder) {
occluders.push(occluder);
}
}
polygonList = polygonList.concat(occluders);
}
function drawPolygon(turtle, p) {
for (let j=0; j<polygonList.length; j++) {
if(!p.boolean(polygonList[j])) {
return;
}
}
p.draw(turtle);
return p;
}
function setupCamera() {
viewMatrix = lookAt4m(camPos, camLookat, [0,1,0]);
projectionMatrix = perspective4m(0.4/scale, stretch);
viewProjectionMatrix = multiply4m(projectionMatrix, viewMatrix);
}
// helper functions
function flipxz(p) {
for (let i=0; i<p.length; i++) {
const vl = p[i];
for (let j=0; j<vl.length; j++) {
p[i][j] = [-vl[j][2],vl[j][1],vl[j][0]-1];
}
}
return p;
}
function center(p, loc) {
const ret = [];
for (let i=0; i<p.length; i++) {
const vl = p[i], v = [];
for (let j=0; j<vl.length; j++) {
v.push(add3(vl[j], loc));
}
ret.push(v);
}
return ret;
}
function createSquare(lb, rt) {
return [lb,[lb[0],rt[1],rt[2]],rt,[rt[0],lb[1],lb[2]]];
}
// polygon functions
function LineSegment(p1, p2) {
this.p1 = p1;
this.p2 = p2;
}
LineSegment.prototype.unique = function() {
for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) {
const ls = lineSegmentsDrawn[i];
if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) ||
(equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){
return false;
}
}
lineSegmentsDrawn.push(this);
return true;
}
function Polygon() {
this.cp = []; // clip path: array of [x,y] pairs
this.dp = []; // 2d line to draw: array of linesegments
}
Polygon.prototype.addOutline = function(s=0) {
for (let i=s, l=this.cp.length; i<l; i++) {
this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l]));
}
}
Polygon.prototype.createPoly = function(x,y,c,r,a) {
this.cp = [];
for (let i=0; i<c; i++) {
this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] );
}
}
Polygon.prototype.addHatching = function(a,d) {
// todo, create a tight bounding polygon, for now fill screen
const hd = 10;
const tp = new Polygon();
tp.createPoly(0,0,4,hd,Math.PI*.5);
const dx = Math.sin(a)*d, dy = Math.cos(a)*d;
const cx = Math.sin(a)*200, cy = Math.cos(a)*200;
for (let i = .5; i<150/d; i++) {
tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx]));
tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx]));
}
tp.boolean(this, false);
this.dp = this.dp.concat(tp.dp);
}
Polygon.prototype.draw = function(t) {
if (this.dp.length ==0) {
return;
}
for (let i=0, l=this.dp.length; i<l; i++) {
const d = this.dp[i];
if (d.unique()) {
if (!equal2(d.p1, t.pos())) {
t.penup();
t.goto(d.p1);
t.pendown();
}
t.goto(d.p2);
}
}
}
Polygon.prototype.inside = function(p) {
// find number of intersections from p to far away - if even you're outside
const p1 = [0, -1000];
let int = 0;
for (let i=0, l=this.cp.length; i<l; i++) {
if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) {
int ++;
}
}
return int & 1;
}
Polygon.prototype.boolean = function(p, diff = true) {
// very naive polygon diff algorithm - made this up myself
const ndp = [];
for (let i=0, l=this.dp.length; i<l; i++) {
const ls = this.dp[i];
// find all intersections with clip path
const int = [];
for (let j=0, cl=p.cp.length; j<cl; j++) {
const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]);
if (pint) {
int.push(pint);
}
}
if (int.length == 0) { // 0 intersections, inside or outside?
if (diff != p.inside(ls.p1)) {
ndp.push(ls);
}
} else {
int.push(ls.p1); int.push(ls.p2);
// order intersection points on line ls.p1 to ls.p2
const cmp = sub2(ls.p2,ls.p1);
int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp));
for (let j=0; j<int.length-1; j++) {
if (!equal2(int[j], int[j+1]) &&
diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) {
ndp.push(new LineSegment(int[j], int[j+1]));
}
}
}
}
this.dp = ndp;
return this.dp.length > 0;
}
// vec2 functions
const equal2=(a,b)=>0.001>dist_sqr2(a,b);
const scale2=(a,b)=>[a[0]*b,a[1]*b];
const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]];
const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]];
const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1];
const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]);
const segment_intersect2=(a,b,d,c)=>{
const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]);
if(0==e)return false;
c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e;
d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e;
return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false;
}
// vec3 functions
const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b];
const len3=(a)=>Math.sqrt(dot3(a,a));
const normalize3=(a)=>scale3(a,1/len3(a));
const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]];
const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]];
const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2];
const cross3=(a,b)=>[a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]];
// vec4 functions
const transform4=(a,b)=>{
const d=new Float32Array(4);
for(let c=0;4>c;c++)d[c]=b[c]*a[0]+b[c+4]*a[1]+b[c+8]*a[2]+b[c+12];
return d;
}
// mat4 functions
const lookAt4m=(a,b,d)=>{ // pos, lookAt, up
const c=new Float32Array(16);
b=normalize3(sub3(a,b));
d=normalize3(cross3(d,b));
const e=normalize3(cross3(b,d));
c[0]=d[0];c[1]=e[0];c[2]=b[0];c[3]=0;
c[4]=d[1];c[5]=e[1];c[6]=b[1];c[7]=0;
c[8]=d[2];c[9]=e[2];c[10]=b[2];c[11]=0;
c[12]=-(d[0]*a[0]+d[1]*a[1]+d[2]*a[2]);
c[13]=-(e[0]*a[0]+e[1]*a[1]+e[2]*a[2]);
c[14]=-(b[0]*a[0]+b[1]*a[1]+b[2]*a[2]);
c[15]=1;
return c;
}
const multiply4m=(a,b)=>{
const d=new Float32Array(16);
for(let c=0;16>c;c+=4)
for(let e=0;4>e;e++)
d[c+e]=b[c+0]*a[0+e]+b[c+1]*a[4+e]+b[c+2]*a[8+e]+b[c+3]*a[12+e];
return d;
}
const perspective4m=(a,b)=>{ // fovy, aspect
const c=(new Float32Array(16)).fill(0,0);
c[5]=1/Math.tan(a/2);
c[0]=c[5]/b;
c[10]=c[11]=-1;
return c;
}