// Forked from "Stars" by reinder // https://turtletoy.net/turtle/a5befa1f8d // Transforms. Created by Reinder Nijhoff 2019 - @reindernijhoff // The MIT License // // I have cleaned up the code of my 'polygon clipping algorithm', as used in a lot // of my turtles. The algorithm is pretty naive and far from perfect, but it will // work most of the time :) // // You can use this utility to draw polygons. The lines of a polygon (this can be // the outline, but you're free to add extra segments of hatching to the polygon), will // be clipped with all polygons that are already drawn. // // https://turtletoy.net/turtle/a5befa1f8d // const turtle = new Turtle(); const polygons = new Polygons(); const total = 250; function walk(i) { drawThing(turtle, i, total); return i < total - 1; } const hatchAngle = Math.PI*2*Math.random(); const sizes = [1.0, 0.33, 0.45, 0.66]; function drawThing(turtle,ii,total) { const p1 = polygons.create(), p2 = polygons.create(); let x = 200*Math.random()-100, y = 200*Math.random()-100, a = Math.random() * Math.PI/2, b = 2+Math.random()*5|0, c = 1+Math.random()*3|0, s = 10 + 10 * Math.random(); if (ii == 0) { x = 0, y=0, s=35; const cp = []; // create clip points that define the shape of the polygon a = Math.PI/2; var heart = [0.7, 0.6, 0.6, 0.6, 0.7, 0.8, 0.9, 0.9, 0.62]; for (let i=0; i<heart.length*2; i++) { const l = s * heart[(i > 8) ? 16-i : i]; cp.push( [x+Math.cos(a+i/8*Math.PI)*l, y+Math.sin(a+i/8*Math.PI)*l]); } p1.addPoints(...cp); p2.addPoints(...cp.map(p => [p[0]+2, p[1]+6])); // shadow offset const hatchiness = 2 + Math.random() * 7.5; if (Math.random() > 0.5) p1.addHatching(hatchAngle, hatchiness); if (Math.random() > 0.5) p1.addHatching(hatchAngle + Math.PI/2, hatchiness); p1.addOutline(); // polygon 1, star with outline p2.addHatching(-Math.PI*.25, 0.75); // polygon 2, star shadow polygons.draw(turtle, p1, true); polygons.draw(turtle, p2, false); } else if (Math.sqrt(x * x + y * y) > 65) { const sizes = [1, .45, .66]; const cp = []; // create clip points that define the shape of the polygon var sides = Math.random() * 6 | 0 + 4; for (let i=0; i<sides*2; i++) { //const l = s * sizes[Math.random()* sizes.length | 0]; const l = s * (i % 4 ? 1 : (i % 2 ? .33 : .66) ); cp.push( [x+Math.cos(a+i/sides*Math.PI)*l, y+Math.sin(a+i/sides*Math.PI)*l]); } p1.addPoints(...cp); p2.addPoints(...cp.map(p => [p[0]+3, p[1]+3])); // shadow offset p1.addOutline(); // polygon 1, star with outline p2.addHatching(hatchAngle, 1); // polygon 2, star shadow if (ii > total*2/3) p2.addHatching(hatchAngle + Math.PI/2, 1); // polygon 2, star shadow if (ii < total/2) { polygons.draw(turtle, p1, true); polygons.draw(turtle, p2, false); } else { polygons.draw(turtle, p2, false); polygons.draw(turtle, p1, true); } } } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }