When I saw Ringers 🦢 I could not resist an attempt.
As @markknol mentioned, original credits go to Dmitri Cherniak: opensea.io/collection/ringers-by-dmitri-cherniak
Known sorting bug (which I prefer to call an artistic feature):
Look at them up close 🔬 (variation)
Look at them up close 🔬 (variation)
Log in to post a comment.
const mode = 0; //min=0 max=3 step=1 (Cover, Cover no pegs, Stringy, Stringy no pegs) const seed = 4879; //min=1000 max=9999 step=1 const dimension = 5; //min=3 max=8 step=1 const samples = .5; //min=.1 max=1 step=.05 const minRadius = 3; //min=.5 max=5 step=.1 const maxRadius = 3; //min=.5 max=5 step=.1 const plotterPen = 1; //min=.5 max=2 step=.1 const debug = false; const params = {dimension: dimension, samplePercentage: samples, pegRadiusMin: Math.min(minRadius, maxRadius), pegRadiusMax: Math.max(minRadius, maxRadius), backgroundColor: [1, 1]}; function walk() { // I tried to make this code resemble https://twitter.com/ix_shells/status/1707573117042729407/photo/2 // 1) Generate a grid of dimension x dimension pegs let pegs = grid(params.dimension) // 2) Sample a selection of pegs based on the samplePercentage let sampledPegs = calibrate(sample(pegs, params.samplePercentage), 180) // 3) Find the center of the sampled pegs let center = averagePosition(sampledPegs) // 4) Sort the sampled pegs by the angle they form with the center peg let sortedPegs = sortPegsByAngle(center, sampledPegs) // 5) Connect the pegs sortedPegs.forEach((peg, index) => { let previousPeg = previous(sortedPegs, index) let nextPeg = next(sortedPegs, index) peg.isConcave = isClockwiseConcave(previousPeg, peg, nextPeg) peg.isEdge = peg.col == Math.min(...sortedPegs.map(p => p.col)) || peg.col == Math.max(...sortedPegs.map(p => p.col)) || peg.row == Math.min(...sortedPegs.map(p => p.row)) || peg.row == Math.max(...sortedPegs.map(p => p.row)) ; if(debug) { peg.index = index; turtle.jump(peg.x, peg.y); text.print(turtle, ''+index, .2); console.log(index, peg, Math.atan2(peg.x, peg.y));console.log(index, lenSq2(sub2(center, [peg.x, peg.y])))} }) let connections = [] sortedPegs.forEach((peg, index) => { let nextPeg = next(sortedPegs, index) let connection = calculateTangentBetweenPegs(peg, nextPeg) connections.push(connection) }) let curves = [] sortedPegs.forEach((peg, index) => { let previousConnection = previous(connections, index) let currentConnection = connections[index] let curve = calculateCurve(peg, previousConnection, currentConnection) curves.push(curve) }) curves.push(curves.shift()); // 6) Colour the form drawBackground(params.backgroundColor) setColor(params.bodyColor) startShape() connections.forEach((connection, index) => { drawLine(connection) drawCurve(curves[index]) }) endShape() shuffle(sortedPegs.filter(p => p.isConcave)).some(p => { p.isChosen = true; return true; }) sortedPegs.forEach((peg, index) => { drawAndColorPeg(peg, index) }) return false; } // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Seedable random number generator by David Bau: http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html !function(a,b,c,d,e,f,g,h,i){function j(a){var b,c=a.length,e=this,f=0,g=e.i=e.j=0,h=e.S=[];for(c||(a=[c++]);d>f;)h[f]=f++;for(f=0;d>f;f++)h[f]=h[g=s&g+a[f%c]+(b=h[f])],h[g]=b;(e.g=function(a){for(var b,c=0,f=e.i,g=e.j,h=e.S;a--;)b=h[f=s&f+1],c=c*d+h[s&(h[f]=h[g=s&g+b])+(h[g]=b)];return e.i=f,e.j=g,c})(d)}function k(a,b){var c,d=[],e=typeof a;if(b&&"object"==e)for(c in a)try{d.push(k(a[c],b-1))}catch(f){}return d.length?d:"string"==e?a:a+"\0"}function l(a,b){for(var c,d=a+"",e=0;e<d.length;)b[s&e]=s&(c^=19*b[s&e])+d.charCodeAt(e++);return n(b)}function m(c){try{return o?n(o.randomBytes(d)):(a.crypto.getRandomValues(c=new Uint8Array(d)),n(c))}catch(e){return[+new Date,a,(c=a.navigator)&&c.plugins,a.screen,n(b)]}}function n(a){return String.fromCharCode.apply(0,a)}var o,p=c.pow(d,e),q=c.pow(2,f),r=2*q,s=d-1,t=c["seed"+i]=function(a,f,g){var h=[];f=1==f?{entropy:!0}:f||{};var o=l(k(f.entropy?[a,n(b)]:null==a?m():a,3),h),s=new j(h);return l(n(s.S),b),(f.pass||g||function(a,b,d){return d?(c[i]=a,b):a})(function(){for(var a=s.g(e),b=p,c=0;q>a;)a=(a+c)*d,b*=d,c=s.g(1);for(;a>=r;)a/=2,b/=2,c>>>=1;return(a+c)/b},o,"global"in f?f.global:this==c)};if(l(c[i](),b),g&&g.exports){g.exports=t;try{o=require("crypto")}catch(u){}}else h&&h.amd&&h(function(){return t})}(this,[],Math,256,6,52,"object"==typeof module&&module,"function"==typeof define&&define,"random"); Math.seedrandom('testerdetest'+(seed==1000?'':seed)); // Add a seed in seedrandom, then Math.random will use this seed // Global code will be evaluated once. const turtle = new Turtle(); const polygons = new Polygons(); const pegPolygons = new Polygons(); const text = new Text(); const grid = (dim) => Array.from({length: dim}).flatMap((col, x) => Array.from({length: dim}).map((cell, y) => ({col: x, row: y, x: 20*(x - dim/2), y: 20*(y - dim/2), r: params.pegRadiusMin + Math.random() * (params.pegRadiusMax - params.pegRadiusMin)}))); const sample = (pegs, percentage) => shuffle(pegs).filter((e, i, a) => i < percentage * a.length); const calibrate = (pegs, size) => { let minmax = pegs.reduce((p, c) => [ [Math.min(c.x - c.r, p[0][0]), Math.max(c.x + c.r, p[0][1])], [Math.min(c.y - c.r, p[1][0]), Math.max(c.y + c.r, p[1][1])] ], [[200, -200], [200, -200]]); let ratio = size / Math.max(minmax[0][1] - minmax[0][0], minmax[1][1] - minmax[1][0]); let transpose = [minmax[0][0] + (minmax[0][1] - minmax[0][0]) / 2, minmax[1][0] + (minmax[1][1] - minmax[1][0]) / 2]; pegs.forEach(peg => { peg.x = (peg.x - transpose[0]) * ratio; peg.y = (peg.y - transpose[1]) * ratio; peg.r *= ratio; }); return pegs; } const averagePosition = (pegs) => [pegs.reduce((p, c) => ({x: p.x + c.y, y: p.y + c.y}))].map(s => [s.x/pegs.length, s.y/pegs.length]).pop(); const sortPegsByAngle = (center, pegs) => pegs.map(p => [p, Math.atan2(p.x, p.y), lenSq2(sub2(center, [p.x, p.y]))]).sort((a,b) => a[1] < b[1]? 1: a[1] > b[1]? -1: (a[2] < b[2]? 1: -1)).map(i => i[0]); const previous = (arr, index) => arr[(arr.length + index - 1) % arr.length]; const next = (arr, index) => arr[(index + 1) % arr.length]; const isClockwiseConcave = (a, b, c) => ((b.x - a.x) * (c.y - b.y) - (b.y - a.y) * (c.x - b.x)) < 0; const calculateTangentBetweenPegs = (peg, nextPeg) => { if(peg.isConcave == nextPeg.isConcave) { let pts = getCirclesTangentPoints([peg.x, peg.y], peg.r, [nextPeg.x, nextPeg.y], nextPeg.r, false); if(peg.isConcave) { return [pts[0][1], pts[1][1]]; } return [pts[0][0], pts[1][0]]; } let pts = getCirclesTangentPoints([peg.x, peg.y], peg.r, [nextPeg.x, nextPeg.y], nextPeg.r, true); if(peg.isConcave) { return [pts[0][1], pts[1][1]]; } return [pts[0][0], pts[1][0]]; } const calculateCurve = (peg, previousConnection, currentConnection) => { let intersect = segment_intersect2(...previousConnection, ...currentConnection); if(intersect !== false) { if(lenSq2(sub2([peg.x, peg.y], intersect)) < peg.r**2 * 1.1) { return [intersect]; } } let ptFrom = Math.atan2(...sub2(previousConnection[1], [peg.x, peg.y]).reverse()) + Math.PI; let ptTo = Math.atan2(...sub2(currentConnection[0], [peg.x, peg.y]).reverse()) + Math.PI; let reach = (ptFrom < ptTo)? ptTo - ptFrom: 2*Math.PI - (ptFrom - ptTo); if(approx1(reach, 0) || approx1(reach, 2*Math.PI)) return [previousConnection[1]] if(peg.isConcave) reach = reach - 2*Math.PI; let steps = Math.max(2, Math.abs(reach * peg.r) | 0); return Array.from({length: steps + 1}).map((v, i, a) => [ peg.r * Math.cos(ptFrom + (i * reach / steps) + Math.PI) + peg.x, peg.r * Math.sin(ptFrom + (i * reach / steps) + Math.PI) + peg.y ]); } const drawBackground = (params) => {}; const setColor = (color) => {}; let polygon; const startShape = () => { polygon = polygons.create(); }; const drawLine = (conn) => { polygon.addPoints(...conn); }; //{ turtle.jump(conn[0]); turtle.goto(conn[1])}; const drawCurve = (curve) => { polygon.addPoints(...curve); }; //{ drawPath(turtle, curve) }; const endShape = () => { polygon.addOutline(); if(mode < 2) { polygon.addHatching(1, plotterPen); } polygons.draw(turtle, polygon); polygon = undefined; }; const drawAndColorPeg = (peg, index) => { if(mode == 2 || (mode == 0 && peg.isConcave)) { let p = pegPolygons.create(); p.addPoints(...circlePoints(peg.r).map(pt => add2(pt, [peg.x, peg.y]))); p.addOutline(); if(peg.isEdge) p.addHatching(1, plotterPen); if(peg.isChosen && mode != 2) p.addHatching(3, plotterPen*1.5); pegPolygons.draw(turtle, p); }}; function getCirclesTangentPoints(c1_center, c1_radius, c2_center, c2_radius, internal = false) { let middle_circle = [scale2(sub2(c1_center, c2_center), .5)].map(hwp => [add2(c2_center, hwp), len2(hwp)]).pop(); if(!internal && c1_radius == c2_radius) { let target = sub2(c2_center, c1_center); let scaledTarget = scale2(target, c1_radius/len2(target)); let partResult = [ add2(c1_center, trans2(rot2(Math.PI/2), scaledTarget)), add2(c1_center, trans2(rot2(Math.PI/-2), scaledTarget)) ]; return [ partResult, partResult.map(pt => add2(pt, target)) ] } let swap = !internal && c2_radius > c1_radius; if(swap) { let t = [[...c1_center], c1_radius]; c1_center = c2_center; c1_radius = c2_radius; c2_center = t[0]; c2_radius = t[1]; } let internal_waypoints = intersectCircles2(c1_center, c1_radius + (internal?c2_radius:-c2_radius), ...middle_circle); if(internal_waypoints.length == 0) return []; let result = [ [ // circle 1, point 1 and 2 circlePointAtDirection2(c1_center, c1_radius, sub2(internal_waypoints[0], c1_center)), circlePointAtDirection2(c1_center, c1_radius, sub2(internal_waypoints[1], c1_center)) ], [ // circle 2, point 1 and 2 circlePointAtDirection2(c2_center, c2_radius, internal? sub2(c1_center, internal_waypoints[0]): sub2(internal_waypoints[0], c1_center)), circlePointAtDirection2(c2_center, c2_radius, internal? sub2(c1_center, internal_waypoints[1]): sub2(internal_waypoints[1], c1_center)) ] ]; return swap? [[result[1][1],result[1][0]],[result[0][1],result[0][0]]]: result; } function approx1(a,b,delta=0.0001) { return -delta < a-b && a-b < delta } //////////////////////////////////////////////////////////////// // 2D Vector Math utility code - Created by several Turtletoy users //////////////////////////////////////////////////////////////// function norm2(a) { return scale2(a, 1/len2(a)); } function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; } function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; } function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; } function scale2(a, s) { return [a[0]*s,a[1]*s]; } function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; } function lenSq2(a) { return a[0]**2+a[1]**2; } function len2(a) { return Math.sqrt(lenSq2(a)); } function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2) function dist2(a,b) { return Math.hypot(...sub2(a,b)); } function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; } function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; } function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2) function intersect_info2(as, ad, bs, bd) { const d = [bs[0] - as[0], bs[1] - as[1]]; const det = bd[0] * ad[1] - bd[1] * ad[0]; if(det === 0) return false; const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det]; return [...res, add2(as, scale2(ad, res[0]))]; } function intersect_ray2(a, b, c, d) { const i = intersect_info2(a, b, c, d); return i === false? i: i[2]; } function segment_intersect2(a,b,c,d, inclusive = true) { const i = intersect_info2(a, sub2(b, a), c, sub2(d, c)); if(i === false) return false; const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1; return t?i[2]:false; } function approx2(a,b,delta=0.0001) { return len2(sub2(a,b)) < delta } function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; } function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; } function nearSq2(test, near, delta = .0001) { return near[0] - delta < test[0] && test[0] < near[0] + delta && near[1] - delta < test[1] && test[1] < near[1] + delta; } function intersectCircles2(p1, r1, p2, r2) { let d = ((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**.5; if (!(Math.abs(r1 - r2) <= d && d <= r1 + r2)) { return []; // no intersection, to far apart or total overlap } const calc = (left, right) => [[(left[0] + right[0]) / 2 + (r1**2 - r2**2) * (right[0] - left[0]) / (2 * d**2), (2 * (r1**2 + r2**2) / d**2 - ((r1**2 - r2**2)**2) / d**4 - 1)**.5 * (right[1] - left[1]) / 2]].map(t => [t[0] + t[1], t[0] - t[1]]).pop(); let xs = calc(p1, p2); let ys = calc([...p1].reverse(), [...p2].reverse()).reverse(); return [[xs[0], ys[0]], [xs[1], ys[1]]]; } function circlePointAtDirection2(circle_center, radius, direction) { return add2(circle_center, scale2(direction, radius/len2(direction))); } //////////////////////////////////////////////////////////////// // Start of some path utility code - Created by Jurgen Westerhof 2023 //////////////////////////////////////////////////////////////// function circlePoints(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); } function pts2Edges(pts) { return pts.map((v, i, a) => [v, a[(i+1)%a.length]]); } function drawPath(turtle, pts) { return pts.forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt)); } function drawTour(turtle, pts) { return drawPath(turtle, pts.concat([pts[0]])); } function drawPoint(turtle, pt) { return drawTour(turtle, circlePoints(.5).map(p => add2(p, pt))); } function isInPolygon(edges, pt) { return edges.map(edge => intersect_info2(edge[0], sub2(edge[1], edge[0]), pt, [0, 300])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] <= 1 && 0 < ii[1]).length % 2 == 1; } function isInVectorTour(vectors, pt) { return vectors.map(v => intersect_info2(...v, pt[0], pt[1])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] < 1 && 0 <= ii[1]).length % 2 == 1; } function tourToVectors(path) { return path.map((v, i, a) => [v, sub2(a[(i+1)%a.length], v)]); } function thickLinePaths(from, to, thickness) { return [trans2(rot2(Math.atan2(...sub2(to, from))), [thickness/2, 0])].map(v => [[add2(from, v), add2(to, v)], [sub2(from, v), sub2(to, v)]]).pop();} // Fisher-Yates (aka Knuth) Shuffle // https://stackoverflow.com/questions/2450954/how-to-randomize-shuffle-a-javascript-array#2450976 function shuffle(array) { let currentIndex = array.length, randomIndex; // While there remain elements to shuffle. while (currentIndex > 0) { // Pick a remaining element. randomIndex = Math.floor(Math.random() * currentIndex); currentIndex--; // And swap it with the current element. [array[currentIndex], array[randomIndex]] = [ array[randomIndex], array[currentIndex]]; } return array; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}} //////////////////////////////////////////////////////////////// // Text utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/1713ddbe99 // Jurgen 2021: Fixed Text.print() to restore turtle._fullCircle //. if was in e.g. degrees mode (or any other) //////////////////////////////////////////////////////////////// function Text() {class Text {print (t, str, scale = 1, italic = 0, kerning = 1) {let fc = t._fullCircle;t.radians();let pos = [t.x(), t.y()], h = t.h(), o = pos;str.split('').map(c => {const i = c.charCodeAt(0) - 32;if (i < 0 ) {pos = o = this.rotAdd([0, 48*scale], o, h);} else if (i > 96 ) {pos = this.rotAdd([16*scale, 0], o, h);} else {const d = dat[i], lt = d[0]*scale, rt = d[1]*scale, paths = d[2];paths.map( p => {t.up();p.map( s=> {t.goto(this.rotAdd([(s[0]-s[1]*italic)*scale - lt, s[1]*scale], pos, h));t.down();});});pos = this.rotAdd([(rt - lt)*kerning, 0], pos, h);}});t._fullCircle = fc;}rotAdd (a, b, h) {return [Math.cos(h)*a[0] - Math.sin(h)*a[1] + b[0], Math.cos(h)*a[1] + Math.sin(h)*a[0] + b[1]];}}const dat = ('br>eoj^jl<jqirjskrjq>brf^fe<n^ne>`ukZdz<qZjz<dgrg<cmqm>`thZhw<lZlw<qao_l^h^e_caccdeefggmiojpkqmqporlshsercp>^vs^as<f^h`hbgdeeceacaab_d^f^h_k`n`q_s^<olmmlolqnspsrrspsnqlol>]wtgtfsereqfphnmlpjrhsdsbraq`o`makbjifjekckaj_h^f_eaecffhimporqssstrtq>eoj`i_j^k_kajcid>cqnZl\\j_hcghglhqjulxnz>cqfZh\\j_lcmhmllqjuhxfz>brjdjp<egom<ogem>]wjajs<ajsj>fnkojpiojnkokqis>]wajsj>fnjniojpkojn>_usZaz>`ti^f_dbcgcjdofrisksnrpoqjqgpbn_k^i^>`tfbhak^ks>`tdcdbe`f_h^l^n_o`pbpdofmicsqs>`te^p^jfmfogphqkqmppnrkshserdqco>`tm^clrl<m^ms>`to^e^dgefhekenfphqkqmppnrkshserdqco>`tpao_l^j^g_ebdgdlepgrjsksnrppqmqlpingkfjfggeidl>`tq^gs<c^q^>`th^e_dadceegfkgnhpjqlqopqorlshserdqcocldjfhigmfoepcpao_l^h^>`tpeohmjjkikfjdhcecddaf_i^j^m_oapepjoomrjshserdp>fnjgihjikhjg<jniojpkojn>fnjgihjikhjg<kojpiojnkokqis>^vrabjrs>]wagsg<amsm>^vbarjbs>asdcdbe`f_h^l^n_o`pbpdofngjijl<jqirjskrjq>]xofndlcicgdfeehekfmhnknmmnk<icgefhfkgmhn<ocnknmpnrntluiugtdsbq`o_l^i^f_d`bbad`g`jambodqfrislsorqqrp<pcokompn>asj^bs<j^rs<elol>_tc^cs<c^l^o_p`qbqdpfoglh<chlhoipjqlqopqorlscs>`urcqao_m^i^g_eadccfckdnepgrismsorqprn>_tc^cs<c^j^m_oapcqfqkpnopmrjscs>`sd^ds<d^q^<dhlh<dsqs>`rd^ds<d^q^<dhlh>`urcqao_m^i^g_eadccfckdnepgrismsorqprnrk<mkrk>_uc^cs<q^qs<chqh>fnj^js>brn^nnmqlrjshsfreqdndl>_tc^cs<q^cl<hgqs>`qd^ds<dsps>^vb^bs<b^js<r^js<r^rs>_uc^cs<c^qs<q^qs>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^>_tc^cs<c^l^o_p`qbqepgohlici>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^<koqu>_tc^cs<c^l^o_p`qbqdpfoglhch<jhqs>`tqao_l^h^e_caccdeefggmiojpkqmqporlshsercp>brj^js<c^q^>_uc^cmdpfrisksnrppqmq^>asb^js<r^js>^v`^es<j^es<j^os<t^os>`tc^qs<q^cs>asb^jhjs<r^jh>`tq^cs<c^q^<csqs>cqgZgz<hZhz<gZnZ<gznz>cqc^qv>cqlZlz<mZmz<fZmZ<fzmz>brj\\bj<j\\rj>asazsz>fnkcieigjhkgjfig>atpeps<phnfleiegfehdkdmepgrislsnrpp>`sd^ds<dhffhekemfohpkpmopmrkshsfrdp>asphnfleiegfehdkdmepgrislsnrpp>atp^ps<phnfleiegfehdkdmepgrislsnrpp>asdkpkpiognfleiegfehdkdmepgrislsnrpp>eqo^m^k_jbjs<gene>atpepuoxnylzizgy<phnfleiegfehdkdmepgrislsnrpp>ate^es<eihfjemeofpips>fni^j_k^j]i^<jejs>eoj^k_l^k]j^<kekvjyhzfz>are^es<oeeo<ikps>fnj^js>[y_e_s<_ibfdegeifjijs<jimfoeretfuius>ateees<eihfjemeofpips>atiegfehdkdmepgrislsnrppqmqkphnfleie>`sdedz<dhffhekemfohpkpmopmrkshsfrdp>atpepz<phnfleiegfehdkdmepgrislsnrpp>cpgegs<gkhhjfleoe>bsphofleieffehfjhkmlompopporlsisfrep>eqj^jokrmsos<gene>ateeeofrhsksmrpo<peps>brdejs<pejs>_ubefs<jefs<jens<rens>bseeps<pees>brdejs<pejshwfydzcz>bspees<eepe<esps>cqlZj[i\\h^h`ibjckekgii<j[i]i_jakbldlfkhgjkllnlpkrjsiuiwjy<ikkmkojqirhthvixjylz>fnjZjz>cqhZj[k\\l^l`kbjcieigki<j[k]k_jaibhdhfihmjilhnhpirjskukwjy<kkimiojqkrltlvkxjyhz>^vamakbhdgfghhlknlplrksi<akbidhfhhillnmpmrlsisg>brb^bscsc^d^dsese^f^fsgsg^h^hsisi^j^jsksk^l^lsmsm^n^nsoso^p^psqsq^r^rs').split('>').map(r=> { return [r.charCodeAt(0)-106,r.charCodeAt(1)-106, r.substr(2).split('<').map(a => {const ret = []; for (let i=0; i<a.length; i+=2) {ret.push(a.substr(i, 2).split('').map(b => b.charCodeAt(0)-106));} return ret; })]; });return new Text();}