Interconnected nodes 🖧

Not all slider combos are error free, but at this point I'm done debugging.
Interconnected nodes 🖧 (variation)
Interconnected nodes 🖧 (variation)
Interconnected nodes 🖧 (variation)

Log in to post a comment.

const firstSplit = 7; //min=2 max=10 step=1
const split = 2; //min=1 max=5 step=1
const margin = 1; //min=.01 max=10 step=.01
const sateliteR = 4; //min=4 max=10 step=.1
const connectionWidth = 1.6; //min=.1 max=3.9 step=.1
const hatching = 1.2; //min=0 max=3 step=.1
const hatch = 1; //min=0 max=1 step=1 (Lines, Circles)

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);

// Global code will be evaluated once.
const turtle = new Turtle();
const polygons = new Polygons();
const overlayPolygons = new Polygons();

let lastSatelites = [[0,0]];
let rotation = 0;

let path = circlePoints(sateliteR, 2*Math.PI, 0, 30);
if(hatching > 0) {
    const center = polygons.create();
    center.addPoints(...path);
    polygons.draw(turtle, center);

    circleHatching([0,0]);
}

function circleHatching(pos) {
    for(let max = (sateliteR / hatching) | 0, i = hatching / 2; i < sateliteR; i+=hatching) {
        const center = polygons.create();
        center.addPoints(...circlePoints(i, 2*Math.PI, 0, 30).map(pt => add2(pt, pos)));
        center.addOutline();
        overlayPolygons.draw(turtle, center);
    }
}


// The walk function will be called until it returns false.
function walk(circle) {
    const satelites = firstSplit * split**circle;
    
    const sumInteriorAngles = (satelites - 2) * Math.PI;
    const minSateliteR = (sateliteR + margin) / Math.cos(sumInteriorAngles / satelites / 2);

    rotation -= Math.PI / (satelites / split) / 2;
    
    const r = Math.max((circle + 1) * (2 * sateliteR + margin), minSateliteR);

    if(r > 100 - sateliteR) {
        const p = overlayPolygons.create();
        p.addPoints(...path);
        p.addOutline();
        overlayPolygons.draw(turtle, p);
        return false;
    }

    const positions = circlePoints(r, 2 * Math.PI, rotation, satelites);
    positions.forEach((pt, i) => {
        const rect = thickLinePaths(lastSatelites[circle == 0? 0: ((i/satelites) * lastSatelites.length) | 0], pt, connectionWidth).flatMap((p, i) => i == 0?p: p.reverse());
        const circ = circlePoints(sateliteR, 2*Math.PI, 0, 30).map(p => add2(pt, p));
        
        const pCirc = polygons.create();
        pCirc.addPoints(...circ);
        if(hatch == 0) pCirc.addHatching(Math.atan2(...pt),hatching);
        polygons.draw(turtle, pCirc);
        
        if(hatching > 0) {
            if(hatch == 1) {
                const center = polygons.create();
                center.addPoints(...circ);
                polygons.draw(turtle, center);
            
                circleHatching(pt);
            }            
            const pRect = polygons.create();
            pRect.addPoints(...rect);
            pRect.addHatching(Math.atan2(...
                (hatch == 0? 
                    (circle == 0? pt: lastSatelites[((i/satelites) * lastSatelites.length) | 0]): 
                    sub2(pt, lastSatelites[circle == 0? 0: ((i/satelites) * lastSatelites.length) | 0])
                )
            ), hatching);
            polygons.draw(turtle, pRect);
        }
        
        path = mergePaths(path, rect);
        path = mergePaths(path, circ);
    });
    lastSatelites = positions;
    
    return true;
}


function approx1(a,b,delta=0.0001) { return -delta < a-b && a-b < delta }

////////////////////////////////////////////////////////////////
// 2D Vector Math utility code - Created by several Turtletoy users
////////////////////////////////////////////////////////////////
function norm2(a) { return scale2(a, 1/len2(a)); }
function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; }
function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; }
function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; }
function scale2(a, s) { return mul2(a, [s,s]); }
function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; }
function lenSq2(a) { return a[0]**2+a[1]**2; }
function len2(a) { return Math.sqrt(lenSq2(a)); }
function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; }
function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2)
function dist2(a,b) { return Math.hypot(...sub2(a,b)); }
function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; }
function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; }
function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2)
function intersect_info2(as, ad, bs, bd) {
    const d = [bs[0] - as[0], bs[1] - as[1]];
    const det = bd[0] * ad[1] - bd[1] * ad[0];
    if(det === 0) return false;
    const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det];
    return [...res, add2(as, scale2(ad, res[0]))];
}
function intersect_ray2(a, b, c, d) {
    const i = intersect_info2(a, b, c, d);
    return i === false? i: i[2];
}
function segment_intersect2(a,b,c,d, inclusive = true) {
    const i = intersect_info2(a, sub2(b, a), c, sub2(d, c));
    if(i === false) return false;
    const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1;
    return t?i[2]:false;
}
function approx2(a,b,delta=0.0001) { return len2(sub2(a,b)) < delta }
function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; }
function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; }
function nearSq2(test, near, delta = .0001) {
    return near[0] - delta < test[0] && test[0] < near[0] + delta &&
           near[1] - delta < test[1] && test[1] < near[1] + delta;
}

////////////////////////////////////////////////////////////////
// Start of some path utility code - Created by Jurgen Westerhof 2023
////////////////////////////////////////////////////////////////
function circlePoints(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); }
function pts2Edges(pts) { return pts.map((v, i, a) => [v, a[(i+1)%a.length]]); }
function drawPath(turtle, pts) { return pts.forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt)); }
function drawTour(turtle, pts) { return drawPath(turtle, pts.concat([pts[0]])); }
function drawPoint(turtle, pt) { return drawTour(turtle, circlePoints(.5).map(p => add2(p, pt))); }
function isInPolygon(edges, pt) { return edges.map(edge => intersect_info2(edge[0], sub2(edge[1], edge[0]), pt, [0, 300])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] <= 1 && 0 < ii[1]).length % 2 == 1; }
function isInVectorTour(vectors, pt) { return vectors.map(v => intersect_info2(...v, pt[0], pt[1])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] < 1 && 0 <= ii[1]).length % 2 == 1; }
function tourToVectors(path) { return path.map((v, i, a) => [v, sub2(a[(i+1)%a.length], v)]); }
function thickLinePaths(from, to, thickness) { return [trans2(rot2(Math.atan2(...sub2(to, from))), [thickness/2, 0])].map(v => [[add2(from, v), add2(to, v)], [sub2(from, v), sub2(to, v)]]).pop();}
function mergePaths(pa, pb) {
    const vectors = [tourToVectors(pa), tourToVectors(pb)];
    
    const intersections = vectors[0].flatMap((a, ia) => vectors[1]
        .map((b, ib) => [ia, ib, intersect_info2(...a, ...b)])
        .filter(ii => ii[2] !== false && 0 <= ii[2][0] && ii[2][0] < 1 && 0 <= ii[2][1] && ii[2][1] < 1)
        .map(ii => [ii[0], ii[1], ii[2][2]])
    )
    
    if(!isInVectorTour(vectors[1], vectors[0][0])) {
        intersections.push(intersections.shift());
    }

    const track = [];
    for(let i = 0; i < intersections.length; i++) {
        track.push(intersections[i][2]);
        let count = intersections[(i+1)%intersections.length][i%2] - intersections[i][i%2];
        if(count < 0) { count += vectors[i%2].length; }

        for(let j = 1; j <= count; j++) {
            track.push(vectors[i%2][(intersections[i][i%2] + j) % vectors[i%2].length][0]);
        }
    }

    return track;
}

////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021)
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////
function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}