Fork of Rock Island | 🏝️
- removed the PoissonDisc usage
- added the grid that is used in this turtle Grid variations by @reinder
This grid allows two shapes; squares / hexagons, which are randomly spit and distorted. Examples:
- Hexagons: Rock Island || 🏝️ (variation)
- Squares: Rock Island || 🏝️ (variation)
Log in to post a comment.
// Forked from "Rock Island 🏝️" by markknol // https://turtletoy.net/turtle/68ef188d1f // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); const seed = 1; // min=1, max=100, step=1 const grid = 15; // min=7, max=30, step=1 const randomDistortion = .5; // min=0, max=1, step=0.01 const spacing = 0.15; // min=0.0, max=1.0, step=0.01 const splitChange = .25; // min=0, max=1, step=0.01 let groups = []; let polygons = new Polygons(); function init() { for (let i = 0; i<grid*grid; i++) { const scale = 150 / grid; const x = (i % grid) - (grid/2|0); const y = (i/grid|0) - (grid/2|0); // create base shape const baseShape = 1; // min=0, max=1, step=1 let points = baseShape ? createHexagon(x, y) : createSquare(x, y); // give vertices random offset points = randomizePoints(points, randomDistortion); // shatter shape into shapes const shapes = shatterPoints(points); // for each shape: repeatedly draw and 'twist' shapes.forEach( shapePoints => { let points = shapePoints.map(point => scl(point, scale)); let mid = [0, 0]; points.forEach(p => { mid[0] += p[0] / points.length; mid[1] += p[1] / points.length; }); points = points.map(p => add(scl(sub(p,mid), 0.3 + (1 - spacing) * 0.7), mid)); let mid2 = [0, 0]; points.forEach(p => { mid2[0] += p[0] / points.length; mid2[1] += p[1] / points.length; }); points.sort((a, b) => (angle(mid2,a) - Math.PI) - (angle(mid2,b) - Math.PI)); groups.push({group:points, mid:mid2}); }); } groups.sort((a,b) => a.mid[1] - b.mid[1]); } // The walk function will be called until it returns false. function walk(i, anim) { if (i == 0) init(); if (groups.length == 0) return; let g = groups.pop(); let group = g.group; let h = Math.min(distance([0, 0], group[0]) / (85), 1); h = 1 - Math.pow(1 - h, 1 + rand()); h = 1 - h; h *= 100; h += 3; group.forEach(p => { p[1] += 45; p[1] /= 2; }); const roofShape = polygons.create(); group.forEach((_, j) => roofShape.addPoints([group[j][0], group[j][1] - h]) ); roofShape.addOutline(); polygons.draw(turtle, roofShape, true); const segments = []; group.forEach((_, i) => segments.push( [group[i], group[(i+1) % group.length]] )); segments.sort( (s0, s1) => Math.max(s1[0][1], s1[1][1]) - Math.max(s0[0][1], s0[1][1])); segments.forEach( segment => { const p1 = segment[0]; const p2 = segment[1]; if (p2[0]-p1[0] < 0) { const shape = polygons.create(); shape.addPoints( [p2[0], p2[1]], [p2[0], p2[1] - h], [p1[0], p1[1] - h], [p1[0], p1[1]], [p2[0], p2[1]] ); const v = [p2[0] - p1[0], p2[1] - p1[1]]; const length = len(v); const normal = [v[1] / length, -v[0] / len(v)]; let lightAngle = 2.1; // min=0, max=7, step=0.01 lightAngle += anim * Math.PI*2; const lightDirection = [Math.sin(lightAngle), Math.cos(lightAngle)]; const diff = lightDirection[0] * normal[0] + lightDirection[1] * normal[1]; let hatching = 0.2 + (0.5 + diff * 0.5) * 2; // make light parts super light if (hatching > 1.4) { let d = (hatching - 1.4) * 2; const ease = t => Math.pow(2, 10.0 * (t - 1.0)); hatching = hatching-0.5 + ease(d) * 0.5; } if (hatching < 9) { shape.addHatching(Math.PI/4, hatching); } shape.addOutline(); polygons.draw(turtle, shape, true); } }); return groups.length; } // shape generators function createSquare(x,y) { return [[x-.5,y+.5], [x-.5,y-.5], [x+.5,y-.5], [x+.5,y+.5]]; } function createHexagon(x,y) { const h = .75, w = 3/8 * (h/(Math.sqrt(3)/4)), center = [x*2*w + (y%2)*w, y*3/2*h]; return [[0,-h],[-w,-h/2],[-w,h/2],[0,h],[w,h/2],[w,-h/2]].map(p => add(center, p)); } // vec2 functions function scl(a,b) { return [a[0]*b, a[1]*b]; } function add(a,b) { return [a[0]+b[0], a[1]+b[1]]; } function sub(a,b) { return [a[0]-b[0], a[1]-b[1]]; } function dot(a,b) { return a[0]*b[0] + a[1]*b[1]; } function len(a) { return Math.sqrt(a[0]**2 + a[1]**2); } function nrm(a) { return scl(a, 1/len(a)); } function lrp(a,b,f) { return [a[0]*f+b[0]*(1-f), a[1]*f+b[1]*(1-f)]; } function angle(a, b) { return Math.atan2(a[1] - b[1], a[0] - b[0]); } function distance(a, b) { return len(sub(a, b)) }; // shape functions function randomizePoints(points, scale = 1) { return points.map( point => add(point, scl( add( [hash(dot(point, [11, 13])), hash(dot(point, [17, 19]))], [-.5,-.5]), scale))); } function shatterPoints(points) { if (points.length <= 3) return [points]; // calculate angle at each vertex and sort them const l = points.length, angles = points.map( (p, i) => { return [dot( nrm( sub(points[(i+1)%l],p)), nrm( sub( points[(i+l-1)%l],p))), i]; }).sort((a,b) => a[0]-b[0]); // split at vertex with largest angle or just randomly if (rand() < splitChange) { const i = angles[0][1], d = 3 + rand()*(l-4)|0, p2 = [...points, ...points]; return [...shatterPoints([...p2].splice(i, d)), ...shatterPoints([...p2].splice(i+d-1, l-d+2))]; } else { return [points]; } } // pseudo random methods function hash(p) { p += seed; p = 1103515245 * (((p) >> 1) ^ (p)); p = 1103515245 * (p ^ (p>>3)); p = p ^ (p >> 16); return p / 1103515245 % 1; } let rseed = seed; function rand() { rseed = 1103515245 * (((rseed) >> 1) ^ (rseed)); rseed = 1103515245 * (rseed ^ (rseed>>3)); rseed = rseed ^ (rseed >> 16); return rseed / 1103515245 % 1; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }