Merry Christmas 2023 🌲

Welcome in my X-mas tree showroom! Feel free to configure your own tree using the sliders and if you really like one: let me know in the comments and I'll throw in an extra ball or two! Merry Christmas!

Notes:
- Setting 'seed' to 0 makes it a dynamic seed
- The 'New turtle'-star is featured as the tree topper

2022: Merry Christmas 🌲

Log in to post a comment.

const seed = 2023; //min=0 max=7000 step=7
const storeys = 8; //min=3 max=15 step=1
const sawLikeTree = .4; //min=0 max=1 step=.01
const branchTrim = 0.3;//min=0 max=.5 step=.05
const branchCpLength = .4; //min=0 max=2 step=.05
const topTrim = 0.4; //min=0 max=.5 step=.05
const topCpLength = .4; //min=0 max=2 step=.05
const ballsProbability = 150; //min=0 max=500 step=10
const ballHatching = 2; //min=0 max=2 step=1 (Lines, Circular, Both)
const ballTypeChange = 0; //min=0 max=1 step=.05
const topperSpikes = 5; //min=5 max=13 step=1
const topperRotate = .25; //min=0 max=1 step=.01
const penThickness = 1; //min=.15 max=4 step=.01
const widthCorrection = 1; //min=.5 max=1.5 step=.01
const plotBackground = 1; //min=0 max=1 step=1 (No, Yes)

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(.7);

// Seedable random number generator by David Bau: http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html
!function(a,b,c,d,e,f,g,h,i){function j(a){var b,c=a.length,e=this,f=0,g=e.i=e.j=0,h=e.S=[];for(c||(a=[c++]);d>f;)h[f]=f++;for(f=0;d>f;f++)h[f]=h[g=s&g+a[f%c]+(b=h[f])],h[g]=b;(e.g=function(a){for(var b,c=0,f=e.i,g=e.j,h=e.S;a--;)b=h[f=s&f+1],c=c*d+h[s&(h[f]=h[g=s&g+b])+(h[g]=b)];return e.i=f,e.j=g,c})(d)}function k(a,b){var c,d=[],e=typeof a;if(b&&"object"==e)for(c in a)try{d.push(k(a[c],b-1))}catch(f){}return d.length?d:"string"==e?a:a+"\0"}function l(a,b){for(var c,d=a+"",e=0;e<d.length;)b[s&e]=s&(c^=19*b[s&e])+d.charCodeAt(e++);return n(b)}function m(c){try{return o?n(o.randomBytes(d)):(a.crypto.getRandomValues(c=new Uint8Array(d)),n(c))}catch(e){return[+new Date,a,(c=a.navigator)&&c.plugins,a.screen,n(b)]}}function n(a){return String.fromCharCode.apply(0,a)}var o,p=c.pow(d,e),q=c.pow(2,f),r=2*q,s=d-1,t=c["seed"+i]=function(a,f,g){var h=[];f=1==f?{entropy:!0}:f||{};var o=l(k(f.entropy?[a,n(b)]:null==a?m():a,3),h),s=new j(h);return l(n(s.S),b),(f.pass||g||function(a,b,d){return d?(c[i]=a,b):a})(function(){for(var a=s.g(e),b=p,c=0;q>a;)a=(a+c)*d,b*=d,c=s.g(1);for(;a>=r;)a/=2,b/=2,c>>>=1;return(a+c)/b},o,"global"in f?f.global:this==c)};if(l(c[i](),b),g&&g.exports){g.exports=t;try{o=require("crypto")}catch(u){}}else h&&h.amd&&h(function(){return t})}(this,[],Math,256,6,52,"object"==typeof module&&module,"function"==typeof define&&define,"random");
Math.seedrandom(''+ (seed == 0? Date.now(): 'Merry Christmas!' + seed));
// Add a seed in seedrandom, then Math.random will use this seed

// Global code will be evaluated once.
const turtle = new Turtle();
const polygons = new Polygons();

const upd = new UniformPointDistributor().getPointIterator(() => 3 + Math.random() * 4);

const treeStoreyPaths = [];
let ptr = 0;
let topperBigR = 15;
// The walk function will be called until it returns false.
function walk(i) {
    const trans = pt => add2(pt, [0, -82]);
    if(i < storeys) { //calculate tree polygon paths
        const size = ((minSize, maxSize) => minSize + (maxSize - minSize) * i / (storeys - 1))(18, 74);
        const storeyY = ((startY, maxY) => startY + (maxY - startY) * i / (storeys - 1))(-70, 10);
        treeStoreyPaths.push(getXMasTreeStoreyPts(size).map(pt => mul2(add2(pt, [0, storeyY]), [widthCorrection, 1])))
    } else if(i == storeys) { //draw the star
        const outer = circlePoints(topperBigR, 2 * Math.PI, 0, topperSpikes);
        const inner = circlePoints((topperSpikes % 2 == 1?6 * topperBigR/15: 8.5*topperBigR/15), 2 * Math.PI, Math.PI / topperSpikes, topperSpikes);
        const path = Array.from({length: outer.length}).flatMap((v, i) => [outer[i], inner[i]]);
        drawPolygon(path.map(pt => trans( trans2(rot2(topperRotate * 2 * Math.PI / topperSpikes), pt) )));

        // featuring the (new-turtle) star
        const dev = [2, 3, 2, 1.5, 2, 1.5, 2, 1.6, 2][topperSpikes - 5];
        const newTurtleStar = circlePoints(9, 2 * Math.PI, 0, topperSpikes);
        const maxLoops = (topperSpikes == 6 || topperSpikes == 10)? 2: 1;
        for(let ii = 0; ii < maxLoops; ii++) {
            const rot = rot2(2 * ii * Math.PI / topperSpikes + (topperRotate * 2 * Math.PI / topperSpikes));
            const nts = newTurtleStar.map(pt => trans2(rot, pt)).map(pt => trans(pt))
            turtle.jump(nts[nts.length - Math.floor(topperSpikes / dev)]);
            nts.forEach((v, i, a) => (maxLoops == 1 || i < a.length / 2)? turtle.goto(a[(i * Math.floor(topperSpikes / dev)) % a.length]): false);
        }
    } else if(i == storeys + 1) { //draw balls
        const minBallY = trans([0,0])[1] + topperBigR;
        const treeStoreyEdges = treeStoreyPaths.map(p => pts2Edges(p));
        const balls = Array.from({length: ballsProbability})
           .map(i => upd.next().value)
           .filter(pt => pt[1] > minBallY && treeStoreyEdges.some(path => isInPolygon(path, pt)))
           .forEach(pt => {
                const typehatch = (Math.random() * (ballHatching == 0? 3: 4)) | 0;
                const hatch = ballHatching == 1? 3: typehatch;
                const ballType = /* hatch == 3? 1: */(() => Math.random() < ballTypeChange? .5 + (ballTypeChange > .5? 1 - ballTypeChange: .5) * Math.random(): 1)();
                const ballPath = circlePoints(pt[2]).map(c => mul2(c, [ballType, 1])).map(c => add2(add2(pt, [0, pt[2]]), c));
                switch(hatch) {
                    case 0:
                    case 1:
                    case 2:
                        drawPolygon(
                            ballPath,
                            Array.from({length: 1 + hatch}).map(v => [Math.random() * Math.PI, .4 + Math.random() * 1.5])
                        )
                        break;
                    case 3:
                        const spacing = penThickness * (.4 + Math.random() * .75);
                        const rounds = (pt[2] / spacing) | 0;
                        for(let i = 0, r = pt[2] - rounds * spacing; i < rounds; i++, r += spacing) {
                            drawPolygon(
                                circlePoints(r,2 * Math.PI, 0, steps = Math.max(8, 2*Math.PI*r|0)).map(c => mul2(c, [ballType, 1])).map(c => add2(add2(pt, [0, pt[2]]), c))
                            )
                        }
                        drawPolygon(ballPath);
                        break;
                }
           });
           
    } else if ( ptr < treeStoreyPaths.length ) { 
        drawPolygon( treeStoreyPaths[ptr++], [[i%2 == 1? 1: 2, .5 + Math.random() * .1]] ); //draw the tree
    } else {
        const mY = treeStoreyPaths[1].reduce((p, c) => p>c[1]?p:c[1], -100);
        drawPolygon( treeStoreyPaths[1].map(pt => add2(pt, [0, 90 - mY])), [[1, .25]] ); //foot of tree
        if(plotBackground == '1') {
            drawPolygon( [[-101, 33], [-101, -101], [101, -101], [101, 33]], [[1, .5], [2, .5]] ); //sky
            drawPolygon( [[-101, 101], [-101, -101], [101, -101], [101, 101]], [[0, 1.5]] ); //floor
        }
        return false;
    }
    return true;
}  

function drawPolygon(polygon, hatching = []) {
    const p = polygons.create();
    p.addPoints(...polygon);
    p.addOutline();
    hatching.forEach(h => p.addHatching(...mul2(h, [1, penThickness])))
    polygons.draw(turtle, p);
}

function getXMasTreeStoreyPts(size = 40) {
    const bottom = circlePoints(size * 2, Math.PI / 2, Math.PI / 4, null, true)
        .map(pt => mul2(pt, [1, .5]));
    const rightSide = getBezierPathByControlVectors(
        [0,-size],
        bottom[0],
        [0, size * (1 + sawLikeTree)],
        [-size * sawLikeTree, 0]
    );
    
    const rSide = trimPath(rightSide, 0, (topTrim * size) | 0);
    const rBottom = trimPath(bottom,  (branchTrim * size) | 0, (branchTrim * size) | 0);
    const rTip = getBezierPathByControlVectors(
        rSide[rSide.length - 1],
        rBottom[0],
        scale2(sub2(bottom[0], rSide[rSide.length - 1]), topCpLength),
        scale2(sub2(bottom[0], rBottom[0]), branchCpLength),
    ).filter((v, i, a) => 0 < i && i < a.length - 1);

    return [
        ...rSide.filter((v, i) => i != 0),
        ...rTip,
        ...rBottom,
        ...rTip.reverse().map(pt => mul2(pt, [-1, 1])),
        ...rSide.reverse().map(pt => mul2(pt, [-1, 1]))
    ];
}
/// Below is the standard lib I just copy paste under almost all my turtles

function approx1(a,b,delta=0.0001) { return -delta < a-b && a-b < delta }

////////////////////////////////////////////////////////////////
// 2D Vector Math utility code - Created by several Turtletoy users
////////////////////////////////////////////////////////////////
function norm2(a) { return scale2(a, 1/len2(a)); }
function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; }
function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; }
function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; }
function scale2(a, s) { return [a[0]*s,a[1]*s]; }
function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; }
function lenSq2(a) { return a[0]**2+a[1]**2; }
function len2(a) { return Math.sqrt(lenSq2(a)); }
function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; }
function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2)
function dist2(a,b) { return Math.hypot(...sub2(a,b)); }
function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; }
function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; }
function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2)
function intersect_info2(as, ad, bs, bd) {
    const d = [bs[0] - as[0], bs[1] - as[1]];
    const det = bd[0] * ad[1] - bd[1] * ad[0];
    if(det === 0) return false;
    const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det];
    return [...res, add2(as, scale2(ad, res[0]))];
}
function intersect_ray2(a, b, c, d) {
    const i = intersect_info2(a, b, c, d);
    return i === false? i: i[2];
}
function segment_intersect2(a,b,c,d, inclusive = true) {
    const i = intersect_info2(a, sub2(b, a), c, sub2(d, c));
    if(i === false) return false;
    const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1;
    return t?i[2]:false;
}
function approx2(a,b,delta=0.0001) { return len2(sub2(a,b)) < delta }
function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; }
function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; }
function nearSq2(test, near, delta = .0001) {
    return near[0] - delta < test[0] && test[0] < near[0] + delta &&
           near[1] - delta < test[1] && test[1] < near[1] + delta;
}

////////////////////////////////////////////////////////////////
// Start of some path utility code - Created by Jurgen Westerhof 2023
////////////////////////////////////////////////////////////////
function circlePoints(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); }
function pts2Edges(pts) { return pts.map((v, i, a) => [v, a[(i+1)%a.length]]); }
function drawPath(turtle, pts) { return pts.forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt)); }
function drawTour(turtle, pts) { return drawPath(turtle, pts.concat([pts[0]])); }
function drawPoint(turtle, pt) { return drawTour(turtle, circlePoints(.5).map(p => add2(p, pt))); }
function isInPolygon(edges, pt) { return edges.map(edge => intersect_info2(edge[0], sub2(edge[1], edge[0]), pt, [0, 300])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] <= 1 && 0 < ii[1]).length % 2 == 1; }
function isInVectorTour(vectors, pt) { return vectors.map(v => intersect_info2(...v, pt[0], pt[1])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] < 1 && 0 <= ii[1]).length % 2 == 1; }
function tourToVectors(path) { return path.map((v, i, a) => [v, sub2(a[(i+1)%a.length], v)]); }
function thickLinePaths(from, to, thickness) { return [trans2(rot2(Math.atan2(...sub2(to, from))), [thickness/2, 0])].map(v => [[add2(from, v), add2(to, v)], [sub2(from, v), sub2(to, v)]]).pop();}
function toursIntersect(path1, path2) { return path1.some((pt1, i1) => path2.some((pt2, i2) => segment_intersect2(pt1, path1[(i1 + 1) % path1.length], pt2, path2[(i2 + 1) % path2.length]) !== false)); }

function pathsIntersect(path1, path2) { return path1.some((pt1, i1) => 
        i1 == path1.length - 1? false: path2.some((pt2, i2) => 
            i2 == path2.length - 1? false: 
            segment_intersect2(pt1, path1[i1 + 1], pt2, path2[i2 + 1]) !== false
        )
    );
}
function pathsIntersections(path1, path2) { return path1.flatMap((pt1, i1) => 
        i1 == path1.length - 1? [[false]]: path2.map((pt2, i2) => 
            i2 == path2.length - 1? [false]: 
            [segment_intersect2(pt1, path1[i1 + 1], pt2, path2[i2 + 1]), i1, i2]
        )
    ).filter(v => v[0] !== false);
}

function getBezierPathByControlVectors(p1, p2, v1, v2, steps = null) {
    return getBezierPath(p1, p2, add2(p1, v1), add2(p2, v2), steps);
}

function getBezierPath(p1, p2, cp, cp2 = null, steps = null) {
    cp2 = cp2 === null? [...cp]: cp2;
    
    const v1 = sub2(cp, p1);
    const v2 = sub2(cp2, cp);
    const v3 = sub2(p2, cp2);
    
    if(steps === null) {
        steps = (len2(v1) + len2(v2) + len2(v3)) | 0;
    } 
    steps--;

    const result = [[...p1]];
    for(let i = 1; i <= steps; i++) {
        const fraction = i / steps;
        
        const pp1 = add2( p1,  scale2(v1, fraction) );
        const pp2 = add2( cp,  scale2(v2, fraction) );
        const pp3 = add2( cp2, scale2(v3, fraction) );
        
        const vv1 = sub2( pp2, pp1 );
        const vv2 = sub2( pp3, pp2 );
        
        const ppp1 = add2( pp1, scale2(vv1, fraction));
        const ppp2 = add2( pp2, scale2(vv2, fraction));
        
        const vvv1 = sub2( ppp2, ppp1 );
        
        result.push( add2( ppp1, scale2( vvv1, fraction )) );
    }
    return result;
}

function pathLength(path) {
    return path.reduce((p, c) => [p[0] + len2(sub2(p[1], c)), c], [0, path[0]])[0];
}

function trimPath(path, stripFromStart = 0, stripFromEnd = 0, relative = false) {
    if(stripFromStart < 0 || stripFromEnd < 0) throw new Error('Cannot trim by negative length');
    if(path.length < 2) throw new Error('Not a valid path');

    const pathLengths = path.map((v, i, a) => len2(sub2(v, a[(i+1)%a.length])));
    pathLengths.pop();
    
    const totalLength = pathLengths.reduce((p, c) => p+c, 0);
    if(relative) {
        stripFromStart = stripFromStart * totalLength;
        stripFromEnd = stripFromEnd * totalLength;
    }

    if(totalLength < stripFromStart + stripFromEnd) return [];

    const copiedPath = path.map(pt => [...pt]);
    
    while(true) {
        if(pathLengths.length == 0) return [];
        
        const cLength = pathLengths.pop();
        const cPoint = copiedPath.pop();
        
        stripFromEnd -= cLength;
        if(0 <= stripFromEnd) continue;

        copiedPath.push(lerp2(
            copiedPath[copiedPath.length - 1],
            cPoint,
            -stripFromEnd / cLength
        ));
        //pathLengths.push(-stripFromEnd);
        break;
    }

    while(true) {
        if(pathLengths.length == 0) return [];
        
        const cLength = pathLengths.shift();
        const cPoint = copiedPath.shift();
        
        stripFromStart -= cLength;
        if(0 <= stripFromStart) continue;

        copiedPath.unshift(lerp2(
            copiedPath[0],
            cPoint,
            -stripFromStart / cLength
        ));
        //pathLengths.push(-stripFromStart);
        break;
    }
    return copiedPath;
}

function uniformlyDistributePath(path, steps = null) {
    if(steps !== null && steps < 2) throw new Error('Cannot distribute length over less than 2 points');
    if(path.length < 2) throw new Error('Not a valid path');

    const pathLengths = path.map((v, i, a) => len2(sub2(v, a[(i+1)%a.length])));
    pathLengths.pop();
    
    const totalLength = pathLengths.reduce((p, c) => p+c, 0);
    
    if(steps == null) steps = totalLength | 0;
    
    const lengthPerStep = totalLength / steps;

    const copiedPath = path.map(pt => [...pt]);

    const resultPath = [copiedPath[0]];

    let remainingLength = lengthPerStep;
    for(let i = 0; i < pathLengths.length; i++) {
        if(pathLengths[i] < remainingLength) {
            remainingLength -= pathLengths[i];
            continue;
        }
        const newPoint = lerp2(
            copiedPath[i],
            copiedPath[i + 1],
            remainingLength / pathLengths[i]
        );
        resultPath.push(newPoint);
        copiedPath[i] = newPoint;
        pathLengths[i] -= remainingLength;
        remainingLength = lengthPerStep;
        i--;
    }

    if(resultPath.length == steps + 1) {
        resultPath.pop();
    }
    resultPath.push([...path[path.length - 1]]);
    
    resultPath.forEach((pt, i, a) => drawPoint(turtle, pt));
    
    return resultPath;
}



// Fisher-Yates (aka Knuth) Shuffle
// https://stackoverflow.com/questions/2450954/how-to-randomize-shuffle-a-javascript-array#2450976
function shuffle(array) {
  let currentIndex = array.length,  randomIndex;

  // While there remain elements to shuffle.
  while (currentIndex > 0) {

    // Pick a remaining element.
    randomIndex = Math.floor(Math.random() * currentIndex);
    currentIndex--;

    // And swap it with the current element.
    [array[currentIndex], array[randomIndex]] = [
      array[randomIndex], array[currentIndex]];
  }

  return array;
}


////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021)
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////
function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}


////////////////////////////////////////////////////////////////
// Uniform Point Distribution code - Created by Jurgen Westerhof 2023
////////////////////////////////////////////////////////////////
function UniformPointDistributor(leftTop = [-100, -100], rightBottom = [100, 100]) {
    class UniformPointDistributor {
        constructor(leftTop = [-100, -100], rightBottom = [100, 100]) {
            this.leftTop = leftTop;
            this.rightBottom = rightBottom;
            this.width = rightBottom[0]-leftTop[0];
            this.height = rightBottom[1]-leftTop[1];
            this.maxDist = (this.width**2+this.height**2)**.5;
            this.pts = [];
        }
    
        *getPointIterator(radiusFunction = null, candidates = 20, maxTries = 1000) {
            if(radiusFunction == null) radiusFunction = (x, y, maximum) => 0;
            
            const randomPoint = () => [Math.random()*this.width+this.leftTop[0],Math.random()*this.height+this.leftTop[1]];
            
            this.pts.push([randomPoint()].map(pt => [...pt, radiusFunction(...pt)])[0]);
            yield this.pts[this.pts.length - 1];
            
            while(true) {
                let pt = [0,0,-1];
                let tries = 0;
                while(pt[2] < 0 && tries < maxTries) {
                    tries++;
                    //using [length] candidate points
                    pt = Array.from({length: candidates})
                         //which are random points
                         .map(i => randomPoint())
                         //then add the distance to that candidate minus the radius of each point it is compared to
                         .map(i => [i[0], i[1], this.pts.map(j => [j[0], j[1], Math.hypot(i[0]-j[0], i[1]-j[1]) - j[2]])
                                                   //so that it is the smallest distance from the
                                                   //candidate to any of the already chosen points
                                                   .reduce((prev, current) => (current[2] < prev[2])? current: prev, [0,0,this.maxDist])[2]
                            ])
                         //then pick the candidate that has the largest minimum distance from the group of candidates
                         .reduce((prev, current) => prev == null? current: ((current[2] > prev[2])? current: prev), null)
                         //and set the 3rd position to its own radius instead of the distance to the nearest point
                         .map((v, i, arr) => i < 2? v: radiusFunction(arr[0], arr[1], v))
                         ////and remove the distance before promoting the candidate
                         //.filter((i, k) => k < 2)
                }
                if(tries == maxTries) return false;
                //add a point to the list
                this.pts.push(pt);
                yield pt;
            }
        }
    }
    return new UniformPointDistributor(leftTop, rightBottom);
}