My Truchet tile type approach to Cubic cityscape #1
Q*Bert Cityscape 🏙️ 🌇 (variation)
Q*Bert Cityscape 🏙️ 🌇 (variation)
Log in to post a comment.
const edgeSize = 10; //min=2 max=80 step=1 const rings = 9; //min=0 max=30 step=1 const hatch = 1; //min=0 max=1 step=1 (No, Yes) const hatchScalar = 1; //min=1 max=7 step=.1 const plotOutlines = 0; //min=0 max=1 step=1 (No, Yes) const pStairs = 1; //min=0 max=1 step=.01 const pBuilding = 1; //min=0 max=1 step=.01 const pPorch = 1; //min=0 max=1 step=.01 const outerRing = 1; //min=0 max=1 step=1 (Anything, Only buildings) const Explain = 0; //min=0 max=0 step=1 (If building or porch: chances below relative to each other) const pDoor = .5; //min=0 max=1 step=.01 const pWindow = 1; //min=0 max=1 step=.01 const pNothing = .75; //min=0 max=1 step=.01 const Explain2 = 0; //min=0 max=0 step=1 (Below is the chance for a ladder if no door or window is placed on a porch wall) const pLadder = 0; //min=0 max=1 step=.01 const Explain3 = 0; //min=0 max=0 step=1 (If stairs: chances below relative to each other) const pStairsLeft = 1; //min=0 max=1 step=.01 const pStairsRight = 1; //min=0 max=1 step=.01 const pStairsWall = 0; //min=0 max=1 step=.01 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(.7); // Global code will be evaluated once. const turtle = new Turtle(); const text = new Text(); const polygons = new Polygons(); turtle.radians(); class HexGrid { innerRVectors = []; // list of downright, upright, up, upleft, downleft, down vectors offsetModifiers = [ [ 1, (column) => column % 2 == 0? 0: 1 ], // downright [ 1, (column) => column % 2 == 0? -1: 0 ], //upright [ 0, (column) => -1 ], //up [-1, (column) => column % 2 == 0? -1: 0 ], //upleft [-1, (column) => column % 2 == 0? 0: 1 ], //downleft [ 0, (column) => 1 ] //down ]; cubeModifiers = [[1,0,-1],[1,-1, 0],[0,-1,1],[-1,0,1],[-1,1,0],[0,1,-1]]; iterator = null; currentOffset = [0,0]; currentIndex = 0; currentCube = [0,0,0]; currentDouble = [0,0]; currentRing = 0; constructor(edgeSize, spiral = false, rotation = 0, clockwise = false) { this.edgeSize = edgeSize; this.innerSize = Math.sqrt(.75) * edgeSize; this.spiral = spiral; this.rotation = rotation; this.clockwise = clockwise } setInnerRVectors() { for(let i = 1; i <= 6; i++) { this.innerRVectors.push(trans2(rot2(((Math.PI / 3) * i * (this.clockwise? -1: 1)) - this.rotation), [0, this.innerSize * 2])); } } updateCoordination(index) { this.currentOffset = add2(this.currentOffset, [this.offsetModifiers[index][0], this.offsetModifiers[index][1](this.currentOffset[0])]); this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)]; this.currentCube = add3(this.currentCube, this.cubeModifiers[index]); this.currentIndex++; } *spiralCellPositions() { let position = turtle.pos(); yield this.yieldCell(position); while(this.currentRing++ !== false) { position = add2(position, this.innerRVectors[5]); this.updateCoordination(5); yield this.yieldCell(position); for(let j = 0; j < 6; j++) { for(let i = 0; i < this.currentRing - (j == 0? 1: 0); i++) { position = add2(position, this.innerRVectors[j]); this.updateCoordination(j); yield this.yieldCell(position); } } } } *ringCellPositions() { let position = turtle.pos(); yield this.yieldCell(position); while(this.currentRing++ !== false) { let rPosition = add2(position, scale2(this.innerRVectors[5], this.currentRing)); this.currentOffset = [0, this.currentRing]; this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)]; this.currentCube = [0, this.currentRing, -this.currentRing]; this.currentIndex++; yield this.yieldCell(rPosition); for(let i = 1; i <= 6; i++) { for(let n = 0; n < (i == 6? this.currentRing - 1: this.currentRing); n++) { rPosition = add2(rPosition, this.innerRVectors[i % 6]); this.updateCoordination(i % 6); yield this.yieldCell(rPosition); } } } } yieldCell(position) { return new HexCell(this.edgeSize, position, this.currentIndex, this.currentOffset, this.currentCube, this.currentDouble, this.currentRing, this.rotation); } nextCell() { if(this.iterator == null) { this.setInnerRVectors(); this.iterator = this.spiral? this.spiralCellPositions(): this.ringCellPositions(); this.index = 0; } return this.iterator.next().value; } } class HexCell { constructor(size, position, index, offset, cube, double, ring, rotation) { this.position = position; this.index = index; this.offset = offset; this.cube = cube; this.double = double; this.ring = ring; this.size = size; this.rotation = rotation; } getBorderPoints(borderSize = null, relativeTo = null) { if(borderSize == null) { borderSize = this.size; } let points = []; for(let i = 0; i < 6; i++) { points.push(add2(relativeTo == null? this.position: relativeTo, [Math.cos(i/3 * Math.PI + this.rotation) * borderSize, Math.sin(i/3 * Math.PI + this.rotation) * borderSize])); } return points; } drawBorder(turtle, borderSize = null) { let points = this.getBorderPoints(borderSize); turtle.jump(points[0]); for(let i = 1; i < points.length; i++) { turtle.goto(points[i]); } turtle.goto(points[0]); turtle.jump(this.position); } } let hg = new HexGrid(edgeSize, false, Math.PI / 6 + Math.PI); // The walk function will be called until it returns false. function walk(i) { let cell = hg.nextCell(); turtle.jump(cell.position); //cell.drawBorder(turtle); let pts = cell.getBorderPoints(null, [0,0]); let ptss = [...pts, ...pts]; let colors = [[Math.PI/3, 900*hatchScalar], [Math.PI/3, .51*hatchScalar], [Math.PI *2/ 3, .3*hatchScalar]];//, [Math.PI/3, .6]]; let tileType = Math.random() * (pStairs + pBuilding + pPorch); if(tileType < pStairs) { //stairs let stairsType = Math.random() * (pStairsLeft + pStairsRight + pStairsWall); if(stairsType < pStairsLeft) { tileType = 2; } else { tileType = stairsType < pStairsLeft + pStairsRight? 3: 4; } } else { tileType = tileType < pStairs + pBuilding? 0: 1; } let decorationLeft = Math.random() * (pDoor + pWindow + pNothing); let decorationRight = Math.random() * (pDoor + pWindow + pNothing); decorationLeft = (decorationLeft < pDoor)? 1: decorationLeft < pDoor + pWindow? 2: 0; decorationRight = (decorationRight < pDoor)? 1: decorationRight < pDoor + pWindow? 2: 0; if(tileType == 1) { decorationLeft = Math.random() < pLadder? 3: decorationLeft; decorationRight = Math.random() < pLadder? 3: decorationRight; } switch(sw = cell.ring == rings && outerRing == 1? 0: tileType) { case 0: case 1: if(sw == 1) { function ladder(mirrorLadder) { let poot = [[edgeSize*3**.5*.5* 1/6, edgeSize/6], [edgeSize*3**.5*.5* 6/15, -edgeSize*9/10]]; let poot2 = [add2(poot[0], scale2(pts[3], 1 / 5)), add2(poot[1], scale2(pts[3], 1 / 5))]; let ladder = [poot, poot2]; for(let q = 1; q < 10; q++) { ladder.push([add2(poot[0], scale2(sub2(poot[1], poot[0]), .1 * q)), add2(poot2[0], scale2(sub2(poot2[1], poot2[0]), .1 * q))]); } for(let line of ladder) { turtle.jump(add2(cell.position, multi2(line[0], mirrorLadder? [-1, 1]: [1,1]) )); turtle.goto(add2(cell.position, multi2(line[1], mirrorLadder? [-1, 1]: [1,1]) )); } } if(decorationLeft == 3) { ladder(false); } if(decorationRight == 3) { ladder(true); } } function doorWindow(mirrored, isWindow) { let sideDoor = [[ [-edgeSize*3**.5*.5* 2/3, edgeSize*2/3 - (isWindow? edgeSize/3: 0)], [-edgeSize*3**.5*.5* 2/3, 0], [-edgeSize*3**.5*.5* 1.7/3, edgeSize*.3/6], [-edgeSize*3**.5*.5* 1.7/3, edgeSize*.75*5/6 - (isWindow? edgeSize/3: 0)] ]]; for(let pt of sideDoor) { const p = polygons.create(); p.addPoints(...pt.map((u) => add2(cell.position, add2(sw == 0? [0,0]: (mirrored?pts[0]:pts[2]), multi2(u, [mirrored?-1:1, 1]))))); if(hatch == 1) p.addHatching(...colors[mirrored?1:2]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); } let door = [[ [-edgeSize*3**.5*.5* 2/3, edgeSize*2/3 - (isWindow? edgeSize/3: 0)], [-edgeSize*3**.5*.5* 2/3, 0], [-edgeSize*3**.5*.5* 1/3, edgeSize/6], [-edgeSize*3**.5*.5* 1/3, edgeSize*5/6 - (isWindow? edgeSize/3: 0)] ]]; for(let pt of door) { const p = polygons.create(); p.addPoints(...pt.map((u) => add2(cell.position, add2(sw == 0? [0,0]: (mirrored?pts[0]:pts[2]), multi2(u, [mirrored?-1:1, 1]))))); if(hatch == 1) p.addHatching(...colors[0]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); } } if(decorationLeft == 1 || decorationLeft == 2) { doorWindow(false, decorationLeft == 2); } if(decorationRight == 1 || decorationRight == 2) { doorWindow(true, decorationRight == 2); } /* for(let q = 1; q <= 2; q++) { const p = polygons.create(); for(let w = 0; w < 40; w++) { p.addPoints(add2(add2(cell.position, scale2(pts[1], sw == 0?.5:-.5)), [Math.cos(Math.PI * w/20) * edgeSize * .5 * (q/2), .5*Math.sin(Math.PI * w/20) * edgeSize * .5 * (q/2)] )); } if(hatch == 1) p.addHatching(...colors[q-1]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); } */ let rotH= rot2( Math.PI); for(let j = 1; j < 3; j++) { const p = polygons.create(); p.addPoints(cell.position, ...ptss.filter((pt,k) => j * 2 <= k && k < j * 2 + 3).map(u => add2(cell.position, sw == 0? u: trans2(rotH, u)))); if(hatch == 1) p.addHatching(...colors[3-j]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); } break; case 2: //to upper left case 3: //to upper right case 4: //horizontal let stairType = sw - 2; let firstFlat = Math.random() < .5; let uppers = [[ //for stairs to topleft [-edgeSize*3**.5*.5, -edgeSize*.5], //left [0, -edgeSize], //top [edgeSize*3**.5*.5/4, -edgeSize*7/8], //right [-edgeSize*3**.5*.5*3/4, -edgeSize*3/8], //bottom ]]; for(let u = 0; u < 3; u++) { uppers.push(uppers[uppers.length - 1].map(o => [o[0]+(edgeSize*3**.5*.5/4), o[1]+edgeSize*3/8])) } let front = []; for(let u = 0; u < uppers.length; u++) { front.splice(front.length / 2, 0, uppers[u][1], uppers[u][2], uppers[u][3], uppers[u][0]); } front.splice(front.length / 2, 0, [edgeSize*3**.5*.5, edgeSize*.5], [0, edgeSize]); let rot = rot2(Math.PI*2/3 * (sw - 2)); uppers = uppers.map(u => u.map(u => trans2(rot, u))); front = front.map(u => trans2(rot, u)); for(let up of uppers) { const p = polygons.create(); p.addPoints(...up.map((u) => add2(cell.position, u))); if(hatch == 1) p.addHatching(...colors[stairType]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); } { const p = polygons.create(); p.addPoints(...front.map((u) => add2(cell.position, u))); if(hatch == 1) p.addHatching(...colors[(stairType+2)%3]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); } const p = polygons.create(); p.addPoints(...pts.map(u => add2(cell.position, u))); if(hatch == 1) p.addHatching(...colors[(stairType+1)%3]); if(plotOutlines == 1) p.addOutline(); polygons.draw(turtle, p); break; } return i < (nthTriangular(rings) * 6); } function nthTriangular(n) { return ((n * n) + n) / 2; } // // Vector math // function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } function scale2(a,b) { return [a[0]*b,a[1]*b]; } function sub2(a,b) { return [a[0]-b[0], a[1]-b[1]]; } function add2(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function add3(a,b) { return [a[0]+b[0],a[1]+b[1],a[2]+b[2]]; } function multi2(a, b) { return [a[0]*b[0], a[1]*b[1]]; } //////////////////////////////////////////////////////////////// // Text utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/1713ddbe99 // Jurgen 2021: Fixed Text.print() to restore turtle._fullCircle //. if was in e.g. degrees mode (or any other) //////////////////////////////////////////////////////////////// function Text() {class Text {print (t, str, scale = 1, italic = 0, kerning = 1) {let fc = t._fullCircle;t.radians();let pos = [t.x(), t.y()], h = t.h(), o = pos;str.split('').map(c => {const i = c.charCodeAt(0) - 32;if (i < 0 ) {pos = o = this.rotAdd([0, 48*scale], o, h);} else if (i > 96 ) {pos = this.rotAdd([16*scale, 0], o, h);} else {const d = dat[i], lt = d[0]*scale, rt = d[1]*scale, paths = d[2];paths.map( p => {t.up();p.map( s=> {t.goto(this.rotAdd([(s[0]-s[1]*italic)*scale - lt, s[1]*scale], pos, h));t.down();});});pos = this.rotAdd([(rt - lt)*kerning, 0], pos, h);}});t._fullCircle = fc;}rotAdd (a, b, h) {return [Math.cos(h)*a[0] - Math.sin(h)*a[1] + b[0], Math.cos(h)*a[1] + Math.sin(h)*a[0] + b[1]];}}const dat = ('br>eoj^jl<jqirjskrjq>brf^fe<n^ne>`ukZdz<qZjz<dgrg<cmqm>`thZhw<lZlw<qao_l^h^e_caccdeefggmiojpkqmqporlshsercp>^vs^as<f^h`hbgdeeceacaab_d^f^h_k`n`q_s^<olmmlolqnspsrrspsnqlol>]wtgtfsereqfphnmlpjrhsdsbraq`o`makbjifjekckaj_h^f_eaecffhimporqssstrtq>eoj`i_j^k_kajcid>cqnZl\\j_hcghglhqjulxnz>cqfZh\\j_lcmhmllqjuhxfz>brjdjp<egom<ogem>]wjajs<ajsj>fnkojpiojnkokqis>]wajsj>fnjniojpkojn>_usZaz>`ti^f_dbcgcjdofrisksnrpoqjqgpbn_k^i^>`tfbhak^ks>`tdcdbe`f_h^l^n_o`pbpdofmicsqs>`te^p^jfmfogphqkqmppnrkshserdqco>`tm^clrl<m^ms>`to^e^dgefhekenfphqkqmppnrkshserdqco>`tpao_l^j^g_ebdgdlepgrjsksnrppqmqlpingkfjfggeidl>`tq^gs<c^q^>`th^e_dadceegfkgnhpjqlqopqorlshserdqcocldjfhigmfoepcpao_l^h^>`tpeohmjjkikfjdhcecddaf_i^j^m_oapepjoomrjshserdp>fnjgihjikhjg<jniojpkojn>fnjgihjikhjg<kojpiojnkokqis>^vrabjrs>]wagsg<amsm>^vbarjbs>asdcdbe`f_h^l^n_o`pbpdofngjijl<jqirjskrjq>]xofndlcicgdfeehekfmhnknmmnk<icgefhfkgmhn<ocnknmpnrntluiugtdsbq`o_l^i^f_d`bbad`g`jambodqfrislsorqqrp<pcokompn>asj^bs<j^rs<elol>_tc^cs<c^l^o_p`qbqdpfoglh<chlhoipjqlqopqorlscs>`urcqao_m^i^g_eadccfckdnepgrismsorqprn>_tc^cs<c^j^m_oapcqfqkpnopmrjscs>`sd^ds<d^q^<dhlh<dsqs>`rd^ds<d^q^<dhlh>`urcqao_m^i^g_eadccfckdnepgrismsorqprnrk<mkrk>_uc^cs<q^qs<chqh>fnj^js>brn^nnmqlrjshsfreqdndl>_tc^cs<q^cl<hgqs>`qd^ds<dsps>^vb^bs<b^js<r^js<r^rs>_uc^cs<c^qs<q^qs>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^>_tc^cs<c^l^o_p`qbqepgohlici>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^<koqu>_tc^cs<c^l^o_p`qbqdpfoglhch<jhqs>`tqao_l^h^e_caccdeefggmiojpkqmqporlshsercp>brj^js<c^q^>_uc^cmdpfrisksnrppqmq^>asb^js<r^js>^v`^es<j^es<j^os<t^os>`tc^qs<q^cs>asb^jhjs<r^jh>`tq^cs<c^q^<csqs>cqgZgz<hZhz<gZnZ<gznz>cqc^qv>cqlZlz<mZmz<fZmZ<fzmz>brj\\bj<j\\rj>asazsz>fnkcieigjhkgjfig>atpeps<phnfleiegfehdkdmepgrislsnrpp>`sd^ds<dhffhekemfohpkpmopmrkshsfrdp>asphnfleiegfehdkdmepgrislsnrpp>atp^ps<phnfleiegfehdkdmepgrislsnrpp>asdkpkpiognfleiegfehdkdmepgrislsnrpp>eqo^m^k_jbjs<gene>atpepuoxnylzizgy<phnfleiegfehdkdmepgrislsnrpp>ate^es<eihfjemeofpips>fni^j_k^j]i^<jejs>eoj^k_l^k]j^<kekvjyhzfz>are^es<oeeo<ikps>fnj^js>[y_e_s<_ibfdegeifjijs<jimfoeretfuius>ateees<eihfjemeofpips>atiegfehdkdmepgrislsnrppqmqkphnfleie>`sdedz<dhffhekemfohpkpmopmrkshsfrdp>atpepz<phnfleiegfehdkdmepgrislsnrpp>cpgegs<gkhhjfleoe>bsphofleieffehfjhkmlompopporlsisfrep>eqj^jokrmsos<gene>ateeeofrhsksmrpo<peps>brdejs<pejs>_ubefs<jefs<jens<rens>bseeps<pees>brdejs<pejshwfydzcz>bspees<eepe<esps>cqlZj[i\\h^h`ibjckekgii<j[i]i_jakbldlfkhgjkllnlpkrjsiuiwjy<ikkmkojqirhthvixjylz>fnjZjz>cqhZj[k\\l^l`kbjcieigki<j[k]k_jaibhdhfihmjilhnhpirjskukwjy<kkimiojqkrltlvkxjyhz>^vamakbhdgfghhlknlplrksi<akbidhfhhillnmpmrlsisg>brb^bscsc^d^dsese^f^fsgsg^h^hsisi^j^jsksk^l^lsmsm^n^nsoso^p^psqsq^r^rs').split('>').map(r=> { return [r.charCodeAt(0)-106,r.charCodeAt(1)-106, r.substr(2).split('<').map(a => {const ret = []; for (let i=0; i<a.length; i+=2) {ret.push(a.substr(i, 2).split('').map(b => b.charCodeAt(0)-106));} return ret; })]; });return new Text();} //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}