Fun things with hex grids.
Using coordinate systems described at redblobgames.com/grids/hexagons/
Includes modified truchet decoration from Hexagon Truchet (added rotation)
Hex grid study ⬣⬡⬢ (variation)
Hex grid study ⬣⬡⬢ (variation)
Hex grid study ⬣⬡⬢ (variation)
Log in to post a comment.
const show = 1; //min=0 max=6 step=1 (None,Index,Offset,Cube,Double,Ring,Decoration) const decoration = 0; //min=0 max=4 step=1 (Circle,Mini border,Scaled borders,Random fillers,Path truchet) const loopMode = 0; //min=0 max=1 step=1 (Spiral - only affects index,Ring - only affects index) const drawEdges = 1; //min=0 max=1 step=1 (False,True) const edgeSize = 10; //min=2 max=30 step=1 const orientation = 0; //min=0 max=360 step=1 const rings = 5; //min=0 max=30 step=1 const clockwise = 0; //min=0 max=1 step=1 (False,True) // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); const text = new Text(); const polygons = new Polygons(); turtle.radians(); const rotation = (orientation / 180) * Math.PI; const clockwiseIndex = clockwise == 1; turtle.seth(rotation); class HexGrid { innerRVectors = []; // list of downright, upright, up, upleft, downleft, down vectors offsetModifiers = [ [ 1, (column) => column % 2 == 0? 0: 1 ], // downright [ 1, (column) => column % 2 == 0? -1: 0 ], //upright [ 0, (column) => -1 ], //up [-1, (column) => column % 2 == 0? -1: 0 ], //upleft [-1, (column) => column % 2 == 0? 0: 1 ], //downleft [ 0, (column) => 1 ] //down ]; cubeModifiers = [[1,0,-1],[1,-1, 0],[0,-1,1],[-1,0,1],[-1,1,0],[0,1,-1]]; iterator = null; currentOffset = [0,0]; currentIndex = 0; currentCube = [0,0,0]; currentDouble = [0,0]; currentRing = 0; constructor(edgeSize, spiral = false, rotation = 0, clockwise = false) { this.edgeSize = edgeSize; this.innerSize = Math.sqrt(.75) * edgeSize; this.spiral = spiral; this.rotation = rotation; this.clockwise = clockwise } setInnerRVectors() { for(let i = 1; i <= 6; i++) { this.innerRVectors.push(trans2(rot2(((Math.PI / 3) * i * (this.clockwise? -1: 1)) - this.rotation), [0, this.innerSize * 2])); } } updateCoordination(index) { this.currentOffset = add2(this.currentOffset, [this.offsetModifiers[index][0], this.offsetModifiers[index][1](this.currentOffset[0])]); this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)]; this.currentCube = add3(this.currentCube, this.cubeModifiers[index]); this.currentIndex++; } *spiralCellPositions() { let position = turtle.pos(); yield this.yieldCell(position); while(this.currentRing++ !== false) { position = add2(position, this.innerRVectors[5]); this.updateCoordination(5); yield this.yieldCell(position); for(let j = 0; j < 6; j++) { for(let i = 0; i < this.currentRing - (j == 0? 1: 0); i++) { position = add2(position, this.innerRVectors[j]); this.updateCoordination(j); yield this.yieldCell(position); } } } } *ringCellPositions() { let position = turtle.pos(); yield this.yieldCell(position); while(this.currentRing++ !== false) { let rPosition = add2(position, scale2(this.innerRVectors[5], this.currentRing)); this.currentOffset = [0, this.currentRing]; this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)]; this.currentCube = [0, this.currentRing, -this.currentRing]; this.currentIndex++; yield this.yieldCell(rPosition); for(let i = 1; i <= 6; i++) { for(let n = 0; n < (i == 6? this.currentRing - 1: this.currentRing); n++) { rPosition = add2(rPosition, this.innerRVectors[i % 6]); this.updateCoordination(i % 6); yield this.yieldCell(rPosition); } } } } yieldCell(position) { return new HexCell(this.edgeSize, position, this.currentIndex, this.currentOffset, this.currentCube, this.currentDouble, this.currentRing, this.rotation); } nextCell() { if(this.iterator == null) { this.setInnerRVectors(); this.iterator = this.spiral? this.spiralCellPositions(): this.ringCellPositions(); this.index = 0; } return this.iterator.next().value; } } class HexCell { constructor(size, position, index, offset, cube, double, ring, rotation) { this.position = position; this.index = index; this.offset = offset; this.cube = cube; this.double = double; this.ring = ring; this.size = size; this.rotation = rotation; } getBorderPoints(turtle, borderSize = null) { let isDown = turtle.isdown(); turtle.up(); if(borderSize == null) { borderSize = this.size; } turtle.forward(borderSize); turtle.right(turtle._fullCircle / 3); let points = []; for(let i = 0; i < 6; i++) { points.push(turtle.pos()); turtle.forward(borderSize); turtle.right(turtle._fullCircle / 6); } turtle.left(turtle._fullCircle / 3); turtle.forward(-borderSize); if(isDown) { turtle.down(); } return points; } drawBorder(turtle, borderSize = null) { let points = this.getBorderPoints(turtle, borderSize); turtle.jump(points[0]); for(let i = 1; i < points.length; i++) { turtle.goto(points[i]); } turtle.goto(points[0]); turtle.jump(this.position); } write(turtle, mode) { let fontSize = 1; let txt = ''; switch(mode) { case 1: //index fontSize = this.size / 45; txt = '' + this.index; break; case 2: //offset txt = '['+this.offset+']'; fontSize = this.size / 90; break; case 3: //cube fontSize = this.size / 100; break; case 4: //double txt = '['+this.double+']'; fontSize = this.size / 90; break; case 5: //ring fontSize = this.size / 45; txt = '' + this.ring; break; } let h = turtle.h(); turtle.up() if(mode == 3) { let pos = turtle.pos(); for(let i = 0; i < 3; i++) { turtle.left(Math.PI / 2); turtle.forward((this.size / 1.8)); turtle.right(Math.PI / 2); txt = ''+this.cube[i]; let hh = turtle.h(); turtle.seth(0); turtle.backward(txt.length * 10 * fontSize); text.print(turtle, txt, fontSize); turtle.seth(hh); turtle.up() turtle.jump(pos); turtle.right((2 * Math.PI) / 3); } turtle.down() } else { turtle.seth(0); turtle.backward(txt.length * 10 * fontSize); turtle.down(); text.print(turtle, txt, fontSize); } turtle.seth(h); } decorate(turtle, mode) { switch(mode) { case 0: //circle let h = turtle.h(); turtle.seth(0); turtle.jump(this.position[0], this.position[1] - (this.size / 2)); turtle.circle(this.size / 2); turtle.seth(h); break; case 1: //mini border this.drawBorder(turtle, this.size * .8); break; case 2: for(let i = .8; i > 0; i -= .2) { this.drawBorder(turtle, this.size * i); } break; case 3: //random fill let points = this.getBorderPoints(turtle); let p = polygons.create(); p.addPoints(...points); p.addHatching(Math.random() * 360, (Math.random() * 1.5) + .2); polygons.draw(turtle, p, true); break; case 4: //path truchet drawReinderHexagon(turtle, this.position[0], this.position[1], this.size, .28, this.rotation); break; } } } let hg = new HexGrid(edgeSize, loopMode === 0, rotation, clockwiseIndex); // The walk function will be called until it returns false. function walk(i) { let cell = hg.nextCell(); turtle.jump(cell.position); if(drawEdges) { cell.drawBorder(turtle); } switch(show) { case 1: case 2: case 3: case 4: case 5: cell.write(turtle, show); break; case 6: cell.decorate(turtle, decoration); default: } return i < (nthTriangular(rings) * 6); } function nthTriangular(n) { return ((n * n) + n) / 2; } // // Vector math // function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } function scale2(a,b) { return [a[0]*b,a[1]*b]; } function add2(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function add3(a,b) { return [a[0]+b[0],a[1]+b[1],a[2]+b[2]]; } //////////////////////////////////////////////////////////////// // Text utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/1713ddbe99 // Jurgen 2021: Fixed Text.print() to restore turtle._fullCircle //. if was in e.g. degrees mode (or any other) //////////////////////////////////////////////////////////////// function Text() {class Text {print (t, str, scale = 1, italic = 0, kerning = 1) {let fc = t._fullCircle;t.radians();let pos = [t.x(), t.y()], h = t.h(), o = pos;str.split('').map(c => {const i = c.charCodeAt(0) - 32;if (i < 0 ) {pos = o = this.rotAdd([0, 48*scale], o, h);} else if (i > 96 ) {pos = this.rotAdd([16*scale, 0], o, h);} else {const d = dat[i], lt = d[0]*scale, rt = d[1]*scale, paths = d[2];paths.map( p => {t.up();p.map( s=> {t.goto(this.rotAdd([(s[0]-s[1]*italic)*scale - lt, s[1]*scale], pos, h));t.down();});});pos = this.rotAdd([(rt - lt)*kerning, 0], pos, h);}});t._fullCircle = fc;}rotAdd (a, b, h) {return [Math.cos(h)*a[0] - Math.sin(h)*a[1] + b[0], Math.cos(h)*a[1] + Math.sin(h)*a[0] + b[1]];}}const dat = ('br>eoj^jl<jqirjskrjq>brf^fe<n^ne>`ukZdz<qZjz<dgrg<cmqm>`thZhw<lZlw<qao_l^h^e_caccdeefggmiojpkqmqporlshsercp>^vs^as<f^h`hbgdeeceacaab_d^f^h_k`n`q_s^<olmmlolqnspsrrspsnqlol>]wtgtfsereqfphnmlpjrhsdsbraq`o`makbjifjekckaj_h^f_eaecffhimporqssstrtq>eoj`i_j^k_kajcid>cqnZl\\j_hcghglhqjulxnz>cqfZh\\j_lcmhmllqjuhxfz>brjdjp<egom<ogem>]wjajs<ajsj>fnkojpiojnkokqis>]wajsj>fnjniojpkojn>_usZaz>`ti^f_dbcgcjdofrisksnrpoqjqgpbn_k^i^>`tfbhak^ks>`tdcdbe`f_h^l^n_o`pbpdofmicsqs>`te^p^jfmfogphqkqmppnrkshserdqco>`tm^clrl<m^ms>`to^e^dgefhekenfphqkqmppnrkshserdqco>`tpao_l^j^g_ebdgdlepgrjsksnrppqmqlpingkfjfggeidl>`tq^gs<c^q^>`th^e_dadceegfkgnhpjqlqopqorlshserdqcocldjfhigmfoepcpao_l^h^>`tpeohmjjkikfjdhcecddaf_i^j^m_oapepjoomrjshserdp>fnjgihjikhjg<jniojpkojn>fnjgihjikhjg<kojpiojnkokqis>^vrabjrs>]wagsg<amsm>^vbarjbs>asdcdbe`f_h^l^n_o`pbpdofngjijl<jqirjskrjq>]xofndlcicgdfeehekfmhnknmmnk<icgefhfkgmhn<ocnknmpnrntluiugtdsbq`o_l^i^f_d`bbad`g`jambodqfrislsorqqrp<pcokompn>asj^bs<j^rs<elol>_tc^cs<c^l^o_p`qbqdpfoglh<chlhoipjqlqopqorlscs>`urcqao_m^i^g_eadccfckdnepgrismsorqprn>_tc^cs<c^j^m_oapcqfqkpnopmrjscs>`sd^ds<d^q^<dhlh<dsqs>`rd^ds<d^q^<dhlh>`urcqao_m^i^g_eadccfckdnepgrismsorqprnrk<mkrk>_uc^cs<q^qs<chqh>fnj^js>brn^nnmqlrjshsfreqdndl>_tc^cs<q^cl<hgqs>`qd^ds<dsps>^vb^bs<b^js<r^js<r^rs>_uc^cs<c^qs<q^qs>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^>_tc^cs<c^l^o_p`qbqepgohlici>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^<koqu>_tc^cs<c^l^o_p`qbqdpfoglhch<jhqs>`tqao_l^h^e_caccdeefggmiojpkqmqporlshsercp>brj^js<c^q^>_uc^cmdpfrisksnrppqmq^>asb^js<r^js>^v`^es<j^es<j^os<t^os>`tc^qs<q^cs>asb^jhjs<r^jh>`tq^cs<c^q^<csqs>cqgZgz<hZhz<gZnZ<gznz>cqc^qv>cqlZlz<mZmz<fZmZ<fzmz>brj\\bj<j\\rj>asazsz>fnkcieigjhkgjfig>atpeps<phnfleiegfehdkdmepgrislsnrpp>`sd^ds<dhffhekemfohpkpmopmrkshsfrdp>asphnfleiegfehdkdmepgrislsnrpp>atp^ps<phnfleiegfehdkdmepgrislsnrpp>asdkpkpiognfleiegfehdkdmepgrislsnrpp>eqo^m^k_jbjs<gene>atpepuoxnylzizgy<phnfleiegfehdkdmepgrislsnrpp>ate^es<eihfjemeofpips>fni^j_k^j]i^<jejs>eoj^k_l^k]j^<kekvjyhzfz>are^es<oeeo<ikps>fnj^js>[y_e_s<_ibfdegeifjijs<jimfoeretfuius>ateees<eihfjemeofpips>atiegfehdkdmepgrislsnrppqmqkphnfleie>`sdedz<dhffhekemfohpkpmopmrkshsfrdp>atpepz<phnfleiegfehdkdmepgrislsnrpp>cpgegs<gkhhjfleoe>bsphofleieffehfjhkmlompopporlsisfrep>eqj^jokrmsos<gene>ateeeofrhsksmrpo<peps>brdejs<pejs>_ubefs<jefs<jens<rens>bseeps<pees>brdejs<pejshwfydzcz>bspees<eepe<esps>cqlZj[i\\h^h`ibjckekgii<j[i]i_jakbldlfkhgjkllnlpkrjsiuiwjy<ikkmkojqirhthvixjylz>fnjZjz>cqhZj[k\\l^l`kbjcieigki<j[k]k_jaibhdhfihmjilhnhpirjskukwjy<kkimiojqkrltlvkxjyhz>^vamakbhdgfghhlknlplrksi<akbidhfhhillnmpmrlsisg>brb^bscsc^d^dsese^f^fsgsg^h^hsisi^j^jsksk^l^lsmsm^n^nsoso^p^psqsq^r^rs').split('>').map(r=> { return [r.charCodeAt(0)-106,r.charCodeAt(1)-106, r.substr(2).split('<').map(a => {const ret = []; for (let i=0; i<a.length; i+=2) {ret.push(a.substr(i, 2).split('').map(b => b.charCodeAt(0)-106));} return ret; })]; });return new Text();} //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}} // Reinder's truchet fill from https://turtletoy.net/turtle/e5df5b10e0 function drawReinderHexagon(t, x, y, scale, lineWidth, rotation) { // if (Math.abs(scale*x) > 100+scale || // Math.abs(scale*y) > 100+scale) return; // early discard const h0 = Math.sqrt(3)/2; const h1 = 1/2; const a = ((Math.random()*3)|0)*Math.PI/3; // random angle const poly = new Polygons(); // 2 transform functions: translate-scale (for background hatching), and rotate-translate-scale const ts = p => [(scale*p[0])+x,(scale*p[1])+y]; const rts = p => ts([Math.cos(a)*p[0]+Math.sin(a)*p[1], Math.cos(a)*p[1]-Math.sin(a)*p[0]]); // vec2 helper functions const add = (a, b) => [a[0]+b[0], a[1]+b[1]]; const sub = (a, b) => [a[0]-b[0], a[1]-b[1]]; const scl = (a, b) => [a[0]*b, a[1]*b]; const rm = [Math.cos(-rotation), -Math.sin(-rotation), Math.sin(-rotation), Math.cos(-rotation)]; const rotate = (a) => [rm[0]*a[0]+rm[2]*a[1], rm[1]*a[0]+rm[3]*a[1]]; // 2 methods to create lines in a tile const line = (s, e, d) => { // line from s to e and width d const p = poly.create(); p.addPoints(rts(add(s,d)), rts(add(e,d)), rts(sub(e,d)), rts(sub(s,d))); p.addSegments(rts(add(s,d)), rts(add(e,d)), rts(sub(e,d)), rts(sub(s,d))); return p; } const circle = (c, r, s, e) => { // circle around c, from angle s to e with radius r const p = poly.create(), c0 =[], c1 = [], f=10; for (let i=0; i<=f; i++) { c0.push(rts(add(c, [Math.cos(s+(e-s)*i/f)*(r+lineWidth), Math.sin(s+(e-s)*i/f)*(r+lineWidth)]))); c1.push(rts(add(c, [Math.cos(e-(e-s)*i/f)*(r-lineWidth), Math.sin(e-(e-s)*i/f)*(r-lineWidth)]))); } p.addPoints(...c0,...c1); for (let i=0; i<f; i++) p.addSegments(c0[i], c0[i+1]); for (let i=0; i<f; i++) p.addSegments(c1[i], c1[i+1]); return p; } // six corners of hexagon const c = []; for (let i=0; i<6; i++) { c.push([Math.cos((i*Math.PI/3) + rotation), Math.sin((i*Math.PI/3) + rotation)]); } // generate lines in tile const l = [], tileType = (Math.random()*5)|0; // 5 different tile types switch (tileType) { case 0: l.push(line(rotate([0,h0]), rotate([0,-h0]), rotate([lineWidth, 0]))); // 3 straight lines l.push(line(rotate([1-h1/2,h0/2]), rotate([-1+h1/2,-h0/2]), rotate(scl([Math.cos(Math.PI/3), -Math.sin(Math.PI/3)], lineWidth)))); l.push(line(rotate([1-h1/2,-h0/2]), rotate([-1+h1/2,h0/2]), rotate(scl([Math.cos(-Math.PI/3), -Math.sin(-Math.PI/3)], lineWidth)))); break; case 1: l.push(line(rotate([0,h0]), rotate([0,-h0]), rotate([lineWidth, 0]))); // straight line + 2 arcs #1 l.push(circle(c[0], h1, Math.PI-Math.PI/3 + rotation, Math.PI+Math.PI/3 + rotation)); l.push(circle(c[3], h1, -Math.PI/3 + rotation, +Math.PI/3 + rotation)); break; case 2: l.push(line(rotate([0,h0]), rotate([0,-h0]), rotate([lineWidth, 0]))); // straight line + 2 arcs #2 l.push(circle(rotate([0,2*h0]), 1+h1, -Math.PI/2-Math.PI/6 + rotation, -Math.PI/2+Math.PI/6 + rotation)); l.push(circle(rotate([0,-2*h0]), 1+h1, Math.PI/2-Math.PI/6 + rotation, Math.PI/2+Math.PI/6 + rotation)); break; case 3: l.push(circle(c[0], h1, Math.PI-Math.PI/3 + rotation, Math.PI+Math.PI/3 + rotation)); // 3 arcs #1 l.push(circle(c[2], h1, -2*Math.PI/3 + rotation, 0 + rotation)); l.push(circle(c[4], h1, 0 + rotation, 2*Math.PI/3 + rotation)); break; default: l.push(circle(rotate([0,2*h0]), 1+h1, -Math.PI/2-Math.PI/6 + rotation, -Math.PI/2+Math.PI/6 + rotation)); // 3 arcs #2 l.push(circle(rotate([-1-h1, h0]), 1+h1, 0 + rotation, -Math.PI/3 + rotation)); l.push(circle(c[5], h1, Math.PI/3 + rotation, Math.PI + rotation)); break; } // shuffle lines and draw l.sort((a,b) => Math.random()-.5); l.map(p => poly.draw(t, p)); // background const p0 = poly.create(); p0.addPoints(...c.map(p => ts(p))); if (lineWidth < 0.35) p0.addHatching(Math.PI/4, 1); poly.draw(t, p0); }