Combines multiple of @reinder 's utils:
- Grid Grid variations
- Tortoise / transforms Transforms
- Simplex noise (as transform) Simplex Noise
Use the sliders or click these links to adjust variables:
- Waved Grid 🏁 (variation)
- Waved Grid 🏁 (variation)
Log in to post a comment.
// Global code will be evaluated once. const turtle = new Tortoise(); const simplex = new SimplexNoise(); const totalInnerShapes = 10; // min=1, max=50, step=1 const innerDepth = 0; // min=-2.5, max=2.5, step=0.01 const innerPow = 1; // min=0, max=2, step=0.01 const density = 0.66; // min=0.05, max=1, step=0.01 const noiseAmplitude = 15; // min=1, max=20, step=0.01 const noiseFrequency = 0.009; // min=0.001, max=0.1, step=0.001 const baseShape = 0; // min=0, max=3, step=1 const seed = 50; /// min=1, max=100, step=1 const randomDistortion = .5; // min=0, max=1, step=0.01 function Simplex() { return p => { const dx = noiseAmplitude * simplex.noise2D(scl(p, noiseFrequency)); const dy = noiseAmplitude * simplex.noise2D(scl([p[1]+1000, -p[0] + 2500], noiseFrequency)); return [p[0]+dx, p[1]+dy]; } } turtle.addTransform(Simplex()); function walk(i) { const grid = 17; // min=3, max=21, step=2 const size = 240; const scale = size / grid; const x = (i % grid) - (grid/2|0); const y = (i/grid|0) - (grid/2|0); // create base shape let points = baseShape % 2 == 0 ? createHexagon(x, y) : createSquare(x, y); // give vertices random offset points = randomizePoints(points, randomDistortion); // shatter shape into shapes const shapes = shatterPoints(points); // inner scales const scales = []; const totalScales = density > rand() ? totalInnerShapes : (density > rand() * 0.5 ? 1 : 0); for (let ii = 0; ii < totalScales; ++ii) scales.push(1 - Math.pow((ii/totalScales), innerPow) * (1-innerDepth)); // for each shape: repeatedly scale from center shapes.forEach(shapePoints => { scales.forEach(innerScale => { let points = shapePoints.map(point => scl(point, scale)); let mid = [0, 0]; points.forEach(p => { mid[0] += p[0] / points.length; mid[1] += p[1] / points.length; }); points = points.map(p => add(scl(sub(p, mid), innerScale), mid)); drawPoints(points, turtle); }); }); return i < grid * grid - 1; } // shape generators function createSquare(x,y) { return [[x-.5,y+.5], [x-.5,y-.5], [x+.5,y-.5], [x+.5,y+.5]]; } function createHexagon(x,y) { const h = .75, w = 3/8 * (h/(Math.sqrt(3)/4)), center = [x*2*w + (y%2)*w, y*3/2*h]; return [[0,-h],[-w,-h/2],[-w,h/2],[0,h],[w,h/2],[w,-h/2]].map(p => add(center, p)); } // vec2 functions function scl(a,b) { return [a[0]*b, a[1]*b]; } function add(a,b) { return [a[0]+b[0], a[1]+b[1]]; } function sub(a,b) { return [a[0]-b[0], a[1]-b[1]]; } function dot(a,b) { return a[0]*b[0] + a[1]*b[1]; } function len(a) { return Math.sqrt(a[0]**2 + a[1]**2); } function nrm(a) { return scl(a, 1/len(a)); } function lrp(a,b,f) { return [a[0]*f+b[0]*(1-f), a[1]*f+b[1]*(1-f)]; } // shape functions function randomizePoints(points, scale = 1) { return points.map( point => add(point, scl( add( [hash(dot(point, [11, 13])), hash(dot(point, [17, 19]))], [-.5,-.5]), scale))); } function drawPoints(points, turtle) { if (points.length > 0) turtle.jump(points[points.length-1]); points.forEach(point => turtle.goto(point)); } function shatterPoints(points) { if (points.length <= 3) return [points]; // calculate angle at each vertex and sort them const l = points.length, angles = points.map( (p, i) => { return [dot( nrm( sub(points[(i+1)%l],p)), nrm( sub( points[(i+l-1)%l],p))), i]; }).sort((a,b) => a[0]-b[0]); // split at vertex with largest angle or just randomly const splitChange = baseShape < 2 ? 0 : 1; /// min=0, max=1, step=0.01 if (rand() < splitChange) { const i = angles[0][1], d = 3 + (l-4)|0, p2 = [...points, ...points]; return [...shatterPoints([...p2].splice(i, d)), ...shatterPoints([...p2].splice(i+d-1, l-d+2))]; } else { return [points]; } } // pseudo random methods function hash(p) { p += seed; p = 1103515245 * (((p) >> 1) ^ (p)); p = 1103515245 * (p ^ (p>>3)); p = p ^ (p >> 16); return p / 1103515245 % 1; } let rseed = seed; function rand() { rseed = 1103515245 * (((rseed) >> 1) ^ (rseed)); rseed = 1103515245 * (rseed ^ (rseed>>3)); rseed = rseed ^ (rseed >> 16); return rseed / 1103515245 % 1; } //////////////////////////////////////////////////////////////// // Tortoise utility code (Minimal Turtle and Transforms) // https://turtletoy.net/turtle/102cbd7c4d //////////////////////////////////////////////////////////////// function Tortoise(x, y) { class Tortoise extends Turtle { constructor(x, y) { super(x, y); this.ps = Array.isArray(x) ? [...x] : [x || 0, y || 0]; this.transforms = []; } addTransform(t) { this.transforms.push(t); this.jump(this.ps); return this; } applyTransforms(p) { if (!this.transforms) return p; let pt = [...p]; this.transforms.map(t => { pt = t(pt); }); return pt; } goto(x, y) { const p = Array.isArray(x) ? [...x] : [x, y]; const pt = this.applyTransforms(p); if (this.isdown() && (this.pt[0]-pt[0])**2 + (this.pt[1]-pt[1])**2 > 4) { this.goto((this.ps[0]+p[0])/2, (this.ps[1]+p[1])/2); this.goto(p); } else { super.goto(pt); this.ps = p; this.pt = pt; } } position() { return this.ps; } } return new Tortoise(x,y); } //////////////////////////////////////////////////////////////// // Simplex Noise utility code. Created by Reinder Nijhoff 2020 // https://turtletoy.net/turtle/6e4e06d42e // Based on: http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf //////////////////////////////////////////////////////////////// function SimplexNoise(seed = 1) { const grad = [ [1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0], [1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1], [0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1] ]; const perm = new Uint8Array(512); const F2 = (Math.sqrt(3) - 1) / 2, F3 = 1/3; const G2 = (3 - Math.sqrt(3)) / 6, G3 = 1/6; const dot2 = (a, b) => a[0] * b[0] + a[1] * b[1]; const sub2 = (a, b) => [a[0] - b[0], a[1] - b[1]]; const dot3 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; const sub3 = (a, b) => [a[0] - b[0], a[1] - b[1], a[2] - b[2]]; class SimplexNoise { constructor(seed = 1) { for (let i = 0; i < 512; i++) { perm[i] = i & 255; } for (let i = 0; i < 255; i++) { const r = (seed = this.hash(i+seed)) % (256 - i) + i; const swp = perm[i]; perm[i + 256] = perm[i] = perm[r]; perm[r + 256] = perm[r] = swp; } } noise2D(p) { const s = dot2(p, [F2, F2]); const c = [Math.floor(p[0] + s), Math.floor(p[1] + s)]; const i = c[0] & 255, j = c[1] & 255; const t = dot2(c, [G2, G2]); const p0 = sub2(p, sub2(c, [t, t])); const o = p0[0] > p0[1] ? [1, 0] : [0, 1]; const p1 = sub2(sub2(p0, o), [-G2, -G2]); const p2 = sub2(p0, [1-2*G2, 1-2*G2]); let n = Math.max(0, 0.5-dot2(p0, p0))**4 * dot2(grad[perm[i+perm[j]] % 12], p0); n += Math.max(0, 0.5-dot2(p1, p1))**4 * dot2(grad[perm[i+o[0]+perm[j+o[1]]] % 12], p1); n += Math.max(0, 0.5-dot2(p2, p2))**4 * dot2(grad[perm[i+1+perm[j+1]] % 12], p2); return 70 * n; } noise3D(p) { const s = dot3(p, [F3, F3, F3]); const c = [Math.floor(p[0] + s), Math.floor(p[1] + s), Math.floor(p[2] + s)]; const i = c[0] & 255, j = c[1] & 255, k = c[2] & 255; const t = dot3(c, [G3, G3, G3]); const p0 = sub3(p, sub3(c, [t, t, t])); const [o0, o1] = p0[0] >= p0[1] ? p0[1] >= p0[2] ? [ [1, 0, 0], [1, 1, 0] ] : p0[0] >= p0[2] ? [ [1, 0, 0], [1, 0, 1] ] : [ [0, 0, 1], [1, 0, 1] ] : p0[1] < p0[2] ? [ [0, 0, 1], [0, 1, 1] ] : p0[0] < p0[2] ? [ [0, 1, 0], [0, 1, 1] ] : [ [0, 1, 0], [1, 1, 0] ]; const p1 = sub3(sub3(p0, o0), [-G3, -G3, -G3]); const p2 = sub3(sub3(p0, o1), [-2*G3, -2*G3, -2*G3]); const p3 = sub3(p0, [1-3*G3, 1-3*G3, 1-3*G3]); let n = Math.max(0, 0.6-dot3(p0, p0))**4 * dot3(grad[perm[i+perm[j+perm[k]]] % 12], p0); n += Math.max(0, 0.6-dot3(p1, p1))**4 * dot3(grad[perm[i+o0[0]+perm[j+o0[1]+perm[k+o0[2]]]] % 12], p1); n += Math.max(0, 0.6-dot3(p2, p2))**4 * dot3(grad[perm[i+o1[0]+perm[j+o1[1]+perm[k+o1[2]]]] % 12], p2); n += Math.max(0, 0.6-dot3(p3, p3))**4 * dot3(grad[perm[i+1+perm[j+1+perm[k+1]]] % 12], p3); return 32 * n; } hash(i) { i = 1103515245 * ((i >> 1) ^ i); const h32 = 1103515245 * (i ^ (i>>3)); return h32 ^ (h32 >> 16); } } return new SimplexNoise(seed); }